
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1982

A general purpose State Architecture Simulator for
discrete systems with application in data
communication protocols
Lap-Kin Ip
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ip, Lap-Kin, "A general purpose State Architecture Simulator for discrete systems with application in data communication protocols "
(1982). Retrospective Theses and Dissertations. 8355.
https://lib.dr.iastate.edu/rtd/8355

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8355?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting througli an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

UniversiV
Micî lms

International
300 N. Zeeb Road
Ann Arbor , MI48106

www.manaraa.com

www.manaraa.com

8307758

Ip, Lap-Kin

A GENERAL PURPOSE STATE ARCHITECTURE SIMULATOR FOR
DISCRETE SYSTEMS WITH APPLICATION IN DATA COMMUNICATION
PROTOCOLS

Iowa State Unmrsity PH.D. 1982

University
Microfiims

International 300 N. Zeeb Road, Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed In the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mari< V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

3. Photographs with dark background

4. Illustrations are poor copy

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s) lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows.

14. Curling and wrinkled pages

15. Other

University
Microfilms

International

www.manaraa.com

www.manaraa.com

A general purpose State Architecture Simulator

for discrete systems with application in

data communication protocols

by

Lap-Kin Ip

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department; Electrical Engineering

Major; Electrical Engineering (Computer Engineering)

Approved;

In Charge of Major Work

Department

For tli^GjfadlS^te College

Iowa State University

Ames, Iowa
1982

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

il

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

A. Formai Methods for Protocol Specification 3

B. Simulation of Protocols 10

C. Outline of the Dissertation 16

II. SPECIFICATION OF DISCRETE SYSTEMS USING

STATE ARCHITECTURE NOTATION 18

A. General Features 20

B. Finite-State Machine 24

C. Pulsed Combinational Function 32

D. Static Combinational Function 32

E. Pulsed Delay 35

F. Static Delay 35

G. Queue 36

H. Derivative 37

I. Clock 38

J. Environment 39

III. STATE ARCHITECTURE SIMULATOR 49

A. Overview of the State Architecture Simulator 49

B. Data Structure 57

C. Transformation 69

D. Data Input 92

www.manaraa.com

ill

E. Initialization 119

F. System Executive 128

IV. APPLICATION OF THE STATE ARCHITECTURE NOTATION

AND STATE ARCHITECTURE SIMULATOR IN SIMULATING DATA

COMMUNICATION PROTOCOLS 188

A. Operational Steps in Running SAS 188

B. A Simple Discrete System Simulation 198

C. Start-Stop Link Simulation 230

D. Advanced Data Communication Control

Procedures Simulation 257

V. DISCUSSION AND CONCLUSIONS 265

A. SAN and SAS Model Size 265

B. Experience with SAN and SAS 266

C. Reliability of SAS 267

D. Limitations of SAN and SAS 269

E. Conclusions 272

VI. BIBLIOGRAPHY 273

VII. ACKNOWLEDGMENTS 277

VIII. APPENDIX: STATE ARCHITECTURE NOTATION

SYNTAX DIAGRAMS 278

www.manaraa.com

1

I. INTRODUCTION

A data communication protocol is a set of regulations governing the

sending and receiving of data between two or more data processing systems

such as computers, terminals, and telephone systems. À set of computers,

terminals, and other data processing systems which are interconnected to

each other is called a computer network.

The SAGE (Semi-Automatic Ground Environment) Air Defense system and

SABRE, an on-line airline reservation system, were two of the earliest

computer networks. These early networks were one-of-a-kind systems that

were developed by experts using unique ad hoc methods to attain the

required function.

The data communication protocols (regulations) involved in governing

the communication between computer systems in the '60s and early '70s were

defined predominantly in natural languages, e.g.. Binary Synchronous

Communication (BSC), CCITT's X.21 and X.25, and the currently popular

HDLC. Validation of the protocol specification (defined in natural

languages) was done mainly by hand checking and human intuition. As a

result, ambiguities existed in the protocol specification. Errors or

differences also existed in implementation. For example, the

implementation of the well-known Binary Synchronous Communication protocol

in different systems by different implementors ended up with incompatible

systems which could not communicate with each other [Sussenguth 1976].

Generally, the natural language form of protocol specification

creates ambiguities in the interpretation of the protocol's exact meaning.

www.manaraa.com

2

Thus, the protocol design cannot be validated and analyzed automatically.

Furthermore, it is not possible for the simulation and implementation of

the protocol system to be derived directly from the specification.

The cost/performance of both computing systems and data communication

facilities improved significantly in the '70s. As a result, a large number

of businesses have begun using computer networks to improve their business

transactions (banking, electronic mail, air reservation, etc.). The

commercial opportunities and the advances in computer technology have led

the computer and communication Industry to market standard network

hardware and software components. This is done so that the user might

build a wide variety of application networks from a small number of

standard components. Therefore, a number of function and interface

standards were developed for these types of components. These standards

include IBM's Systems Network Architecture [SNA 1978], Hewlett-Packard's

Interface Bus [Hewlett-Packard 1975], Digital Equipment Corporation's

DECNET [Digital Equipment 1978], CCITT's X.25 [CCITT 1979] and the IEEE

Standard 488 [IEEE 1978]. However, the support tools needed in the

design, specification, simulation, validation, implementation, and testing

of these kinds of protocols have still been developed largely on an

informal basis. During the last ten years, a significant amount of

research has been focusing on formal methods to support the design,

specification, validation, simulation, and implementation of data

communication protocol systems. In the next section, we will examine

current formal specification and validation techniques applied in the

protocol design process.

www.manaraa.com

3

A. Formal Methods for Protocol Specification

As understood by people in the data communication protocol area,

protocol specifications must ultimately serve several purposes including

definition, verification, simulation, analysis, implementation, and

documentation of the algorithms involved. Definition means a complete and

unambiguous written specification using a reference model. Verification

means the analysis and reliable prediction of the behavior of the system

design during the design stage (from the protocol specification) and prior

to implementation. The verification may be manual or automated.

Simulation means that a direct simulation of the protocol system can be

derived from the protocol specification. The simulation should totally

reflect the function of the design as denoted by the specification.

Analysis means that the specification should provide an analytic basis for

predicting implementation performance characteristics such as throughputs,

queue sizes, response times, and delays. Implementation means that the

specification is a basis for direct implementation, e.g., if the protocol

is specified in a programming language it can be directly compiled into a

running implementation.

In the past decade, many different formal methods have been

proposed for protocol specification. A good collection of the papers

related to this area can be found in the books (1) Communication Protocol

Modelling edited by Sunshine [Sunshine 1981], (2) Computer Network

Architectures and Protocols edited by Green [Green 1982] and (3) the

Proceedings from both the First and Second International Workshop on

www.manaraa.com

X-

4

Protocol Specification, Testing, and Verification [Proceeding of the

First International Workshop 1981] and (Proceeding of the Second

International Workshop 1982].

In general, there are two main paths in the modelling

(specification) and verification of protocols [Sunshine 1978]. The

first path is based on algorithmic description of a protocol system

followed by assertion proofs and temporal logic. This path mainly uses

some kind of programming language to describe protocol systems [Bochmann

1975], [Stenning 1976] and [Hailpern and Owicki 1980]. The second path is

based on some form of state and transition description of a protocol

system followed by a reachability test. This category includes the UCLA

graph [Postel and Farber 1976], Petri nets [Merlin and Farber 1976] and

[Symons 1980a], formal language [Teng and Liu 1978] and [Harangozo 1977],

and finite-state machines [Piatkowski 1975], [Sundstrom 1977], [Bochmann

1978] and [Piatkowski 1979].

1. Programming language model

The general approach of programming languages is to describe

protocol behavior by writing a program or algorithm in some programming

language. Programming languages are well-known and there is little in

the specifications themselves to arouse interest.

This approach is straightforward. It is easily understood by

those who have a programming language background. Assertion methods are

usually used to test certain invariants existing in the protocol.

www.manaraa.com

5

Recently temporal logic has been employed to validate protocols

specified in programming languages [Hailpern and Owicki 1980].

On the other hand, programming language approaches tend to include

implementation details which are overly constraining. The sequential

nature of programming languages hides the concurrent nature of the

protocol. Furthermore, the state of the protocol system is hidden in

the value of the program variables and the stopping places within each

program, which makes the validation process more difficult.

2. State transition model

The general approach of state transition models is to describe the

input and output sequence of a protocol system together with an internal

system state variable, which identifies the status of the current input

history. Even though many of the concepts underlying the various state

transition models (UCLA graph, Petri net and a finite-state machine

approaches) are similar, the notations used for each method is quite

different.

UCLA graphs and Petri nets notation are similar. Petri net models

are represented by a directed graph with nodes and transition bars. The

holding of a condition of a protocol system is represented by placing a

token in the node. If all the nodes (conditions) input to a transition

bar (event) have tokens, then a transition bar (event) can fire (occur).

In this approach, the condition represents both the state and the input

of a protocol system, and the event represents the state transition and

the generation of new outputs of a protocol system. Diaz [Diaz 1982]

www.manaraa.com

6

gives a summary of the evolution of a simple Petri net to different

sophisticated Petri nets such as Place-colored net, Predicate-transition

net, Predicate-action net. Numerical Petri net and Timed net and their

applications in modelling different protocols.

Finite state automata theory was one of the earliest techniques

used to model protocols. A finite state automaton or finite-state

machine is a system consisting of five well-defined entitles S, X, Z,

FNS, FOUT

where S is a finite set of states;

X is a finite set of Inputs;

Z is a finite set of outputs;

FNS is the next stat function;

FOUTS is the output function.

As mentioned by Sunshine [Sunshine 1981], the notion of a machine

which reacts to inputs and produces appropriate outputs is a natural and

intuitive way to view the functioning of a protocol machine. The Inputs

to a protocol machine represent commands from a local user, messages

from a remote protocol machine, or Internally generated events such as

timeouts. The protocol machine changes its state and generates outputs

appropriately after each input so that subsequent inputs will be

processed correctly. The outputs of a protocol machine represent

messages sent to the local users and remote protocol machines.

Early works In using the finite-state machine transition diagram to

model protocol can be found in papers by Bjorner [Bjorner 1970] and

Kawashlma et al. [Kawashima et al. 1971]. In these early works, a single

www.manaraa.com

7

finite-state machine transition diagram is used to represent the global

states of the protocol system. However, for a protocol of any complexity,

the number of states and transitions becomes unworkably large. To solve

this problem, the idea of coupled-machines was introduced, in which the

protocol system is subsequently decomposed into an interconnection of

smaller independent finite-state machines. Models of this category can be

found in papers by Piatkowski [Piatkowski 1975], Bochmann [Bochmann 1978],

Gouda and Manning [Gouda and Manning 1976] and IBM^s SNA Format and

Protocol Reference Manual [SNA 1976].

When a protocol using a sequence number is modelled, such as the data

transfer phase of the CCITT X.25, there must be different states and

transitions to handle each possible sequence number. In this case, the

states of the finite-state machine can become very large depending on

the range of the sequence number to be modelled.

To solve this problem, researchers attempt to combine the

advantages of state transition models and program languages to develop a

hybrid model for protocol representation. The hybrid model usually

employs a state transition model to capture the control state of a

protocol such as the call establishment phase of X.25 and uses the

program variables and algorithms in each major state to process incoming

messages with numerical value. A typical hybrid model is the HDLC model

developed by Bochmann and Chung [Bochmann and Chung 1977]. Other hybrid

models can be found in papers by Danthine and Bremer [Danthine and Bremer

1978], Schultz et al. [Schultz et al. 1980] and Alfonzetti et al.

[Alfonzetti et al. 1979].

www.manaraa.com

8

3. Limitations

As for the above mentioned state transition techniques, Petri nets

and finite-state machines are both widely used by different researchers.

However, most of the models developed today are geared toward

validation, especially the various Petri net approaches. Petri nets can

be used to validate the correctness of certain kinds of communication

protocol through some algorithms and assertions [Symons 1980b]. The

models so far developed using Petri nets seem very large and hard to

understand [Diaz 1982]; this seems to indicate that Petri nets are not

well-suited as a specification tool. One reason is that a Petri net does

not reveal explicitly the global state of the system, rather its markings

do.

Even when finite-state machines are used, most of the models do not

have detailed information concerning interconnections and valid

input/output values to provide a guideline (documentation) for direct

simulation and implementation.

Programming languages do meet the need as a document for direct

simulation and implementation. However, the sequential nature of

program execution, which is over constraining, is undesirable.

Concurrent programming languages and programming languages with monitor

capability may eliminate the sequential constraint, but such kinds of

models are not in the current literature.

In the next section, we will propose a formal specification

language for protocol systems. The language will preserve the

www.manaraa.com

9

concurrent nature of a protocol system and at the same time can be used

as a specification for direct simulation and implementation.

4. Overview of the SAN specification

As was mentioned, the objectives of formal methods in protocol

specification include definition, verification, simulation, analysis,

implementation and documentation. The SAN specification described in

this thesis meets all of the above objectives as discussed below.

The SAN specification approach was begun by Piatkowski [Piatkowski

1975] while he was at work in IBM where he employed the state architecture

oriented method to specify the function and architecture of IBM's Systems

Network Architecture (SNA). The SAN mentioned in this thesis is an

extension of the original SAN.

The SAN approach can be regarded as a hybrid method. It employs

classical finite-state machines and combinational functions to capture

the global states of the protocol system. Since some of the aspects of a

protocol system's behavior cannot be modelled by finite-state machines, a

number of additional primitive component types such as the delay, FIFO

queue, derivative and clock were Introduced in SAN. Also a special

component type, environment, was introduced in SAN to allow an arbitrary

PASCAL procedure to define the function of a component. These primitive

component types have been shown to be useful in building protocol system

models.

As far as the six protocol specification objectives are concerned,

the precise definition of all components' input and output values, their

www.manaraa.com

10

interconnections, and their transitions provide a complete and unambiguous

written specification for the protocol. Even though computer tools for

validation and analysis of SAN specifications have not been developed, we

conjecture that the common verification methods such as reachability

testing, assertion and temporal logic proofs can be used on SAN

specifications. All of the above methods were related to the testing of

the system state variables either by checking the invariants of the state

variables or exhaustly driving the system to land in all possible values

of the state variables.

A SAN model can also be used as a direct simulation model. In

other words, a direct simulation can be automatically derived from the

SAN model. Additionally, a partial or maybe fully automatic implementor

could be built to generate different implementations of the SAN

specification. Finally, the SAN specification augmented with natural

language descriptions can be used as a document for a protocol system.

The SAN specification is used for accurate and precise communication

among many groups of people (designers, implementors and maintainers,

etc.). The natural language description helps to explain the difficult

concepts of the protocol, which may be difficult to understand in reading

the SAN specification.

B. Simulation of Protocols

One of the objectives of protocol specification is to derive a

simulation of the protocol system directly from the protocol

www.manaraa.com

11

specification. This dissertation describes an investigation of the State

Architecture Notation (SAN) and the State Architecture Simulator (SAS), a

simulator driven by the SAN specification.

Though simulation cannot be used to test out a design completely,

it is a good tool for a designer to check out the behavior of a design.

This informal method allows a designer to observe the exchange of input

and output sequences of the simulated system, which is very valuable in

informal design validation. The ability of the simulator to simulate

different levels of abstraction of protocol systems allows designers to

check out the design of subsystems. A simulation model can also be used

to predict the performance of protocol systems in different environments.

If a simulation model exactly reflects the design of a protocol system

written in some formal specification (like SAN), the simulation model can

help the user to interpret the meaning of the formal specification by

exercising the simulation model. In other words, the formal specification

together with the simulation model can be used as a reference model for

the protocol system.

The general approach to building a protocol simulation model In a

computer is first to analyze and understand the concept and design of

the protocol system, second to formulate a conceptual model according to

the level of abstraction desired and third to translate the conceptual

model to some computer executable language representation. Two different

types of computer languages have been widely used by researchers.

First Is the use of general purpose programming languages such as

FORTRAN, PASCAL, PL/1, ALGOL, etc. For example, IBM uses PL/1 as a base

www.manaraa.com

12

language to represent the SNA protocol [SNA 1978] and also uses the PL/1

language representation as a simulation tool to verify protocol designs.

Yeh [Yeh 1979] demonstrates the "systematic model construction

/validation and incremental modelling" approach by simulating HyperNet

via a process oriented language called ÂSPOL.

Second Is the use of general purpose simulation languages such as

SIMSCRIPT II, SIMULA, GPSS, GASPIV, etc. For example, Remes [Remes

1978] developed a GPSS model for simulation of multidrop lines. Also,

many business institutions have developed their own network simulation

packages, for instance, NCR Comten's Link Evaluation Model and Discrete

Simulation Model which is intended for simulation studies of networks

of Comten's products (implemented in FORTRAN).

In general, using general purpose programming languages or

simulation languages to simulate protocol systems suffers from two weak

points. Firstly, the translation from prose specification or even

formal specification to the specified language may introduce errors.

Secondly, it takes a lot of time and effort to code from the

specification into the target language. As for the network simulation

packages developed in business institutions, most of them are too

restricted to their specific applications. Further, most of the

simulation packages are not available to the public.

In order to relieve the designer's burden to translate the protocol

model (specification) to a specific language to form a simulated system

and at the same time to enjoy the benefits of using simulation to

facilitate the design process, we propose a formal language for the

www.manaraa.com

13

representation of protocols, namely the State Architecture Notation

(SAN). We have developed a general purpose simulator, namely the State

Architecture Simulator (SAS), to execute system models represented in

SAN.

Different formal methods for protocol specification and their pros

and cons have been discussed in the previous section. Some of the formal

specifications have a simulator to execute the system models represented

in those specifications. The SARA GMB simulator (^stem Architect's

Apprentice £raph Model of Behavior simulator) [Gardner 1977] and [Razouk

and Estrin 1977] developed at UCLA and IBM's SNA written in the IBM SNA

Format and Protocol Language (FAPL) are examples. Furthermore, the CCITT

Specification and Description Language (SDL), which is still under study,

is also aimed to provide a formal executable specification language for

communication protocols [Rockstrom and Saracco 1982].

The SARA GMB simulator together with GMB translator and PL/1

preprocessor (FLIP) provides the user the capability to execute UCLA

graph models and to examine or modify the state of the control and data

graphs of the model during a simulation. From the machine readable

specification of the control and data graph models, the GMB translator

creates internal data representation of the control and data graphs.

The PL/1 preprocessor takes the PL/l-like code in the processor and

generates the corresponding PL/1 code properly interfaced to the

simulator. The simulator executes the control graph, which models the

different synchronization and mutual exclusion of processes. The

www.manaraa.com

14

simulator provides the designer the capability to conduct interactive

experiments on behavioral models during the design process.

The SARA GMB simulator together with some analytical tools provides

a good base to use in designing and testing out a protocol model.

However, as noted by Postal and Farber [Postel and Farber 1976], the graph

becomes fairly complicated for any practical protocol.

As for IBM's SNA, it was first proposed by Piatkowski [Piatkowski

1975] to represent the SNA protocol modules by interconnections of

finite-state machines and combinational functions. The function of each

finite-state machine and combinational function is realized in a

combination of graphical, matrix and tabular representation as appeared

in the first edition of the IBM's SNA Format and Protocol Reference

Manual [SNA 1976]. In the Second edition of the IBM's SNA Format and

Protocol Reference Manual [SNA 1978], most of the matrices and tables were

translated into PL/1 like procedures and some other FAPL statements. A

translator was built within IBM to translate the FAPL statements into PL/1

statements, so that the SNA specification can be executed. The executable

representation of the SNA data flow control layer has been tested by an

automated protocol validation technique [Schultz et al. 1980].

The State Architecture Simulator (SAS), discussed in this

dissertation, is built to execute system models represented in the SAN

specification language. The reason for choosing, SAN language was

explained in the previous section.

One of the purposes of building SAS is to provide a teaching tool

in formal protocol design at Iowa State University. Students will be

www.manaraa.com

15

able to conduct interactive experiments on protocol designs based on the

SAN language. The SAS, will have the following properties;

1) It is an interactive system. Users can assign inputs and

observe outputs at their terminals. Users can insert break

points in the simulated system so that they can examine the

system status and assign new inputs at the break point.

2) Programmable system input modules, both algorithmic and

random, can be defined in the simulator to allow users to

do both algorithmic and random testing for a long period of

time.

3) It has the capability of data collection by tracing the system

variables during simulation.

4) It provides some system logic checking during simulation; for

instance, it checks 1) if there is any input change of a

component, while the component is busy processing a previous

input; 2) if the input and output values of a component are

elements of the predefined input and output sets, etc.

5) It has a restart initialization process to allow users to

continue a simulated system execution from the state where it

stopped in a previous run.

The above properties will make SAS a useful tool in demonstrating

and validating protocol systems during their design stages.

www.manaraa.com

16

C. Outline of the Dissertation

This dissertation is divided into five main chapters. The first

chapter is the introduction.

The second chapter presents the syntax and semantics of the machine

readable form of the State Architecture Notation (SAN), a language for

specifying models of protocol systems. There is a compatible graphical

version [Piatkowski 1981]. Protocol systems are modelled by specifying an

interconnection of the nine basic components defined in SAN: finite-state

machine (FSM), pulsed combinational function (CFP), static combinational

function (CPS), pulsed delay (DELP), static delay (DELS), queue (QUE),

derivative (DER), clock (CLK), and environment (ENV).

The SAN language discussed in this dissertation was first proposed by

Professor Piatkowski and was refined by us in the process of developing a

State Architecture Simulator to execute the protocol models specified in

SAN language.

The third chapter presents a detailed description of the design and

the implementation of the State Architecture Simulator (SAS) which has

been developed over the last three years by the author. SAS contains

two PASCAL programs and a VAX command procedure that compiles, executes

and reports on simulations of user supplied SAN specification of

protocol systems. It was developed and is running on a VAX 11/780 at

Iowa State University using the VAX VMS V2.0 operating system. SAS

accepts SAN specifications of protocol systems as inputs and executes

the simulated system. SAS is an interactive system allowing users to

www.manaraa.com

17

examine the system status, to assign inputs and save system status at a

terminal.

The fourth chapter presents the application of SAN and SAS to

simulate some specific data communication protocol examples. The

operational steps involved in creating and running an SAB executable

simulated system from the SAN model are first described and then

followed with a simple example to demonstrate the above steps. A second

example demonstrates the use of all the different kinds of basic

components and the trace utilities via a simulation of a Start-Stop

link. A third example illustrates the use of SAN and SAS in simulating

a fairly complicated data communication protocol, namely Advanced Data

Communication Control Procedures (ADCCP). The ADCCP SAN model and the

SAS runs were developed over the past year at Iowa State University by

Mr. Dayun He, Visiting Scholar from the Research Institute of Posts and

Telecommunications of the People's Republic of China.

The fifth chapter evaluates the pros and cons of SAN and SAS and

discusses some of the possible ways that SAN and SAS can be improved to

facilitate the simulation process. Finally, the contributions of the

SAN and the SAS In the protocol design process are presented.

www.manaraa.com

18

II. SPECIFICATION OF DISCRETE SYSTEMS USING STATE

ARCHITECTURE NOTATION

In this chapter, we present the machine readable form of the State

Architecture Notation (SAN). Users interested in a more detailed treat­

ment of the conceptual basis for SAN or in the details of the graphical

version may refer to papers by Piatkowski [Piatkowski 1975] and

[Piatkowski 1981]. Part of the materials appearing in this chapter have

been presented in a paper by Piatkowski, Ip and He [Piatkowski et al.

1982].

The purpose of the SAN is to allow users to represent discrete

systems in a formal and machine readable specification. The basic

approach in defining a complicated discrete system is to decompose the

system, through a series of successive refinements, into a well-defined

interconnection of smaller systems called components. After the

desired level of system decomposition has been structurally described,

the behaviors of the components are defined independently.

Each component in a SAN system model has a unique name and a set of

pulsed and static input and output streams

XP.1,XP.2,...;XS.1,XS.2,...;ZP.1,ZP.2,,...ZS.1,ZS.2,...

as shown in Figure 2.1.

We can reference a particular input or output of any specific

component using PASCAL-like qualification (e.g., name.cxp.3).

Each component operates in asynchronous discrete time with the

pulsed variables being defined only at discrete times and the static

variables changing only at discrete times.

www.manaraa.com

19

name

Figure 2.1. Overview of the input/output structure of a general

component

www.manaraa.com

20

A general SAN system model is built up as an interconnection of

specific instances of nine types of basic components, namely:

finite-state machine (FSM)

pulsed combinational function (CFP)

static combinational function (CFS)

pulsed delay (DELP)

static delay (DELS)

queue (QUE)

derivative (DER)

clock (CLK)

environment (ENV).

A. General Features

Before we describe the detailed specification of each kind of

component, we want to describe the special symbols, the variables, and

the general features used in the SAN specification.

As an aid to clear exposition, all occurrences of special symbols

in SAN will be underlined in this chapter. In the actual use of SAN, the

underlining is not used. Also, the special symbols are confined to either

upper case or lower case as they appear. A list of the special symbols

used in SAN is shown in Figure 2.2. Readers may find it helpful when

reading this section to glance ahead to the examples in Chapter II. B and

Chapter IV.

In the SAN specification, the following variable values are treated

as arbitrary alphanumeric strings: name, state, input, output, cs, nts.

www.manaraa.com

Syinbo I s

CFP

CFS

CHECKOPT

CLK

c losedempty

c losednotempty

CONDITION

cs

cxp, I

cxs. I

defs ln i t

def tc Ik

der tdeI

def tdeq

def tenq

def texec

defzs ln l t

DELP

DELS

deq

DER

DTHISTORY

ENV

everyevent

every t i fnechange

EXPHISTORV

expI red

21

Mean Ings

pu lsed combinat iona l funct ion

s ta t ic combinat iona l funct ion

denotes when the t races o f var iab les are to be recorded

c I ock

a cont ro l s ta te o f a queue

a cont ro l s ta te o f a queue

a PASCAL boolean express ion denot ing when the t races o f
var iab les w i l l be recorded

cur rent l î ta te o f a loca l component

1 th cur rant pu lsed input o f a loca l component

i th currant s ta t ic input o f a loca l component

defau l t in i t ia l s ta te

defau l t t imeout per iod o f a c lock

defau l t de lay t ime

defau l t execut ion t ime to dequeue data f rom a queue

defau l t execut ion t ime to s tore data in a queue

defau l t execut ion t ime

defau l t in i t ia l va lues o f s ta t ic outputs

pu lsed de lay

s ta t ic de lay

dequeue cont ro l pu lse

der ivat ive

t ime in terva l a t which t races o f var iab les are recorded

env i ronment

the STARTEXP w i l l be eva luated a f ter every s imulated event

the STARTEXP w i l l be eva luated whenever the cur rent
event set in the event f i le is empty

ins tance for t rac ing the va lue o f a boolean express ion

a cont ro l s ta te o f a c lock

Figure 2.2. Lists of special symbols in SAN

www.manaraa.com

22

(XM' I MM I ON

f NS

FOUTP

FOUTS

FROM

FSM

FUNCTION

INIT

in ter laced

I I St

mi l I pu I secheck

never

open

procedure

regu I a r

reset

running

S

s ta r t

STARTEXP

STARTEXPCHECK

tbeg

tend

termina l

t i meout

TO

VARHI STORY

VARIABLES

I I (loo loar i (ixpror , r , ion

noxt , s i l l 1.0 funct ion

pu lsed output funct ion

s ta t ic output funct ion

precedes source name l i s t for an input s t ream

f inate-s ta te maol i ine

de l imi ts the beginn ing o f the spec i f ica t ion o f the
funct ion o f an ENV

ind icate the beginn ing o f an in i t ia l iza t ion instance

denotes that sources and dest inat ions o f a l l inputs and
outputs are g iven wi th in the component spec i f ica t ion

Ii St opt ton

ind icates whether mul t ip le s imul taneous pu lsed inputs
to s ing le components are t rapped or not

the STARTEXP w i l l never be eva luated

a cont ro l s ta te o f a queue

procedure opt ion

a t t r ibute o f a t race; denotes that var iab les are recorded
a t regular t ime in terva ls

a cont ro l s ta te o f a c Ioc l< ; a cont ro l input o f a c loc l<

a cont ro l s ta te o f a c lock

s ta te set

a cont ro l s ta te o f a c lock

a PASCAL boolean express ion denot ing when the ENV w i l l
be scheduled

denotes when the STARTEXP o f an ENV is to be eva luated

s imulat ion beginn ing t ime

s imulat ion ending t ime

termina l opt ion

a cont ro l output f rom a c lock

precedes dest inat ion name l i s t for an output s t ream

instance for t rac ing var iab les

in t roduces set o f var iab les to be t raced

Pigure 2.2. (continued)

www.manaraa.com

23

XP pu lsed Input set

XS s ta t ic input set

ZP pu lsed output set

ZS s ta t ic output set

* don ' tea re

the nu l l or empty pu lsed s ignal

=> an i inp l lcator separat ing cs , xp 's , and xs 's f rom nts , n tzp 's
and n tzs 's

/ a r ight s lash separat ing cs , xp 's and xs 's

per iod, a SAN de l imi ter

: co lon, a SAN de l imi ter

; semi-co lon, a SAN de l imi ter

> comma, a SAN de l imi ter

Figure 2.2. (continued)

www.manaraa.com

24

xp, xs, zs, ntzp, and ntzs. Upper and lower case characters can be used

for the strings; however, they are interpreted as different characters.

In any case, the strings cannot be longer than forty characters.

The following dummy variables used in this chapter must be

integers: i, j, k, 1, m, n, q, s, u.

The following variables must be a non-negative real or Integer:

Texec, Tdel, Tenq, Tdeq, Tclk.

As far as the order of specifying each kind of component is

concerned, SAN allows any sequence in placing the components. However,

the specification of the connections and functions and other parameters

within each component are confined to a certain sequence and format. The

detailed syntax diagram of each component in SAN is shown in the Appendix.

Throughout the use of SAN, any syntax question should be answered by

referring to the Appendix.

B. Finite-State Machine

Each instance of a basic component type in a SAN system model is

described in structured machine readable form. Figure 2.3 presents the

general format for specifying a finite-state machine in SAN; we will

look at it first since it is the most complicated and in most systems

the most important type of system component to be used.

In the first line of the specification, the FSM component type is

declared and the unique component name given. All components in the

current version of SAN are interlaced, meaning the sources and

www.manaraa.com

25

FSM name ; interlaced

S : state, state,... ;

defslnit : state;

XP.1 FROM name.ZP.i : input, input,,
XP.2 FROM name.ZP.J ; input, input,,

XS.1 FROM name.ZS.k
XS.2 FROM name.ZS.l

input, input,...;

input, input,...;

^.1 TO name.XP.m, nane.XP.n..
ZP.2 TO name.XP.p, name.XP.q.,

output, output,,
output, output,,

ZS.1 TO name.XS.r, name.XS.s,,
^.2 TO name.XS.t. name.XS.u..

output, output,,
output, output,,

FNS : list

cs / xp.l, xp.2,... / xs.l, XS.2,... => nts ;
cs / xp.l, xp.2,... / xs.l, XS.2,... => nts ;

END;

FOUTP : list

cs / xp.l, xp.2,... / xs.l, XS.2,... => ntzp.l, ntzp.2
cs / xp.l, xp.2,... / xs.l, XS.2,... => ntzp.l, ntzp.2

END;'

FOUTS : list

cs =»> ntzs.l, ntzs.2,... ;
cs => ntzs.1, ntzs.2,... ;

END;

deftexec : Texec;

Ehro;

Figure 2.3. Finite-state machine specification format

www.manaraa.com

26

destinations of all input and output variables are given within the

component specification.

Next we enumerate the finite state set, and specify the default

initial state, defsinit.

Following this, we list in order for each pulsed and static input

and output stream the respective source and destinations and an

enumeration of stream variable values.

For both pulsed and static input, users first specify the local

input (XP.n or XS.n), then follow with FROM, the external source name

(name.ZP.m or name.ZS.m), and the valid set of input values. Their

formats are as follows:

XP.n FROM name.ZP.m : input, ,input;

XS.n FROM name.ZS.m ; input, ,input;

For both pulsed and static output, users first specify the local

output (ZP.m or ZS.m), then follow with TO, the external destination

names (name.XP.n or name.XS.n), and the valid set of output values. The

brackets appearing in the following format mean that multiple

destinations, with a maximum of twenty, are allowed. Their formats are as

follows:

ZP.m TO name.XP.n [,-] : output, ,output;

ZS.m TO name.XS.n [,] : output, ,output;

If the input or output of a component is not connected to any

component, the unconnected input or output is specified as follows:

XP.n UNCONNECTED : input, ,input;

XS.n UNCONNECTED : input, ,input;

www.manaraa.com

27

ZP.m UNCONNECTED : output, .output,

ZS.m UNCONNECTED : output, ,output;

Having defined the scope of the state set and the I/O sets, we now

specify the next state function (FNS), the pulsed output function

(FOUTP) and the static output function (POUTS). Figure 2.3 Illustrates

these functions defined using the list format; I.e., the functions are

defined by listing specific combinations of current state (cs), pulsed

inputs (xp's) and static inputs (xs's) followed by the associated next

state (nts), pulsed outputs (ntzp's) or static outputs (ntzs's). The

cs, xp's, and xs's are separated by a right slash, '/'. Within each set

of inputs, each input element (xp or xs) is separated by a comma and the

input elements are arranged in an ascending order with xp.l or xs.l

appearing first. There is an impllcator, '= separating cs, xp's and

xs's from nts, ntzp's and ntzs's. The number of xp, xs, ntzp and

ntzs elements are equal to the number of pulsed inputs, static Inputs,

pulsed outputs and static outputs of the component.

The general format of a FNS list entry is as follows:

cs/xp.l, xp.2, ,xp.n/xs.l,xs.2, ,x8.m = nts;

The general format of a FOUTP list entry is as follows;

cs/xp.l,xp.2, xp.n/xs.l,xs.2, xs.m = ntzp.1,ntzp.2, ntzp.l;

The general format of a FOUTS list entry is as follows:

cs = ntzs.l, ntzs.2, , ntzs.j;

Beside using regular alphanumeric strings in the line entries of

FNS, FOUTP « and FOUTS, the following options can be used:

www.manaraa.com

28

* (don't care). In any cs, xp, xs position

(null or empty), In any xp or ntzp position

cs, cxp.l or cxs.l in any nts, ntzp or ntzs position.

In the case where the list format for specifying FNS, FOUTP, or

FOUTS is cumbersome, the procedure option may be used. The procedure

option when used to define FNS, FOUTP, or FOUTS of a component, except

in ENV component, is a restricted PASCAL procedure. The procedure may

refer only to the current state and inputs (cs, cxp.n, cxs.m) local to

the components, and assign values to the next state and outputs (nts,

ntzp.l, ntzs.j) local to the component. The local component name is not

used in the prefix of references to these variables. To define a

procedure, the word procedure has to be written following the name of a

function (FNS, FOUTP or FOUTS) and a colon. In the next lines, a set

of statements can be written to represent the procedure functions. The

details of the statements" syntax can be seen in the syntax diagrams

in the Appendix. An END and a semicolon are appended after the last

statement to Indicate the end of the procedure.

The following is an example SAN specification of a flip-flop, named

Flipflop, using a FSM component. The inputs and outputs of the flip-

flop are connected to two fictitious components, namely Source and

Destination, as shown in the following block diagram.

Source xp.l Source xp.l > xp.l zs.l xs. 1

0,l(p) 0,l(s)

Flipflop Destination

www.manaraa.com

29

The flip-flop has two states, 0 and 1. It has a binary pulsed input and

a binary static output. The current state of the flip-flop remembers the

last pulsed input, and the current static output is a direct mapping of

the current state. The SAN model of Flipflop is shown in Figure 2.4.

Notice in the SAN model of Flipflfop, the static input, XS.n, the pulsed

output, ̂ .m, and the pulsed output function, FOUTP, are missing.

Actually, the SAN supports partial specification of different types of

components. The detailed syntax for representing each type of component

can be seen in the Appendix.

As far as the options used in the line entries of FNS, FOUTP and

FOUTS are concerned, the FNS line entries in Figure 2.4 can be improved

by using the don't care symbol, and the current state and input

variables. The improved FNS is as follows:

FNS ; list

/ = cxp.l;

END;

The next state (nts) will be equal to the current pulsed input

(cxp.l) regardless of the current state and current pulsed input value.

On the other hand, the FNS can be specified via a procedure such as

follows :

FNS ; procedure

If cxp.l='0' then nts;='0*

else

if cxp.l='l' then nts:='l';

END;

www.manaraa.com

30

FSM F l ip f lop : in ter laced

S : 0,1;

defs in i t : 0;

XP.1 FROM Source.ZP.1 : 0,1 ;

ZS.1 TO Dest inat lon.XS.1 : 0,1 ;

F N S : I i s t

0/0 => 0;

0/1 => 1;

1/0 => 0;

1/1 => 1;

END;

FOUTS : I 1st

* => os;

END;

def texec : 0.0 ;

END;

Figure 2.4. SAN model of Flipflop

www.manaraa.com

31

or an Improved procedure specification

FNS ; procedure

nts:=cxp.l,

END;

The above four different FNS specifications are equivalent to each

other. They demonstrate the use of the don't care and current input

variables in the list option, and also the use of the procedure option.

In general, a FSM operates as follows:

1) In the absence of a pulsed input, the FSM stays in its current

state, producing a constant static output according to FOUTS(cs).

2) When one (or several simultaneous) pulsed input(s) arrive at

the FSM, the machine becomes busy for the time interval Texec,

prescribed in deftexec, the default time of execution. When

the busy Interval ends the machine assumes the next state, nts,

specified by FNS (cs, xp, xs) and pulses the outputs according

to FOUTP (cs, xp, xs). As a consequence of changing the current

state, the static outputs of the machine may also change.

3) In interpreting the list representation of a FNS, FOUTP or

FOUTS function, the list is scanned from the top to the bottom

line entries. The first line entry that matches with the

current state and inputs (cs, xp, xs) is used to map into the

correspondinig next state and next onputs (nts, ntzp, ntzs);

and, the rest of the line entries are ignored. In case none of

the line entries matches, there is no pulsed output nor any

change in the state or the static outputs of the component.

www.manaraa.com

32

4) The arrival of a pulsed input at a busy FSM is interpreted as a

system execution error.

C. Pulsed Combinational Function

The format for specifying a pulsed combinational function (GPP) in

SAN is presented in Figure 2.5. Conceptually, a pulsed combinational

function is a finite-state machine with one-state and no static outputs;

the state variable is conveniently suppressed in the SAN representation

of a CFP. The operation of a CFP is similar to that of a FSM.

D. Static Combinational Function

The format for specifying a static combinational function (CFS) in

SAN is presented in Figure 2.6.

A static combinational function accepts only static inputs, as a

function of which it produces only static outputs. In response to a

changing input, the CFS becomes busy for the time interval specified in

deftexec. When the busy interval ends the function changes, its outputs

as specified by FOOTS(xs).

The default (initial) values of all static outputs are given in

defzs.

The changing of an input at a busy CFS is interpretted as a system

execution error.

www.manaraa.com

33

CFP name : interlaced

XP.2 FROM name.^.i : input, input,... ;

^.2 FROM name.ZP.j ; input, input,... ;

XS.l. FROM name.ZS.k : input, input,...;

^.2 FROM name.ZS.l : input, input,...;

^.1 TO name.XP.m, name.J^.n,.,. : output, output,... ;

^.2 TO name.XP.p, name.XP.q,... : output, output,... ;

FOUTP ; list

xp.l, xp.2,... / XS.l, XS.2,... => ntzp.l, ntzp.2,...

xp.1, xp.2,... / XS.l, XS.2,... => ntzp.1, ntzp.2,...

m;

deftexec : Texec;

END;

Figure 2.5. Pulsed combinational function specification format

www.manaraa.com

34

CFS name : interlaced

5^.1 FROM name.ZS.k : input, input,...;

XS.2 FROM name.ZS.l : input, input,...;

ZS.1 TO name.XS.r, name.XS.s,... : output, output,.., ;

^.2 TO name.^.t, name.XS.u,. . . : output, output,... ;

FOUTS : list '

xs.l, XS.2,... => ntzs.l, ntzs.2,... ;

xs.l, XS.2,... => ntzs.l, ntzs.2,... ;

END;

defzsinit : zs.1, zs.2,... ;

deftexec : Texec;

END;

Figure 2.6. Static combinational function specification format

DELP name : interlaced

XP.l FROM name.ZP.i : input, input,... ;

^.1 TO name.XP.m, name.XP.n,... : output, output,... ;

deftdel : Tdel;

END;

Figure 2.7. Pulsed delay specification format

www.manaraa.com

35

E. Pulsed Delay

The format for specifying a pulsed delay (DELP) is presented in

Figure 2.7.

A pulsed delay has a single pulsed input and a single pulsed output

and a constant delay time, Tdel, specified in deftdel. A DELP operates

to make

zp.l(t) = xp.l(t - Tdel)

A DELP is an idealized function; it is never busy and can store an

arbitrarily large number of inputs in a finite time interval. The

initial state of a DELP is that of being empty.

F. Static Delay

The format for specifying a static delay (DELS) is presented in

Figure 2.8.

A static delay has a single static input and a single static output

and a constant delay time, Tdel, specified in deftdel. A DELS operates

to make

zs.l(t) =• xs.l(t - Tdel)

A DELS is an idealized function; it is never busy and can store an

input that changes an arbitrary number of times in a finite time

interval. The initial state of a DELS is that of a constant equal to

the initial input.

www.manaraa.com

36

DELS nnmo : Jn to r lncod

XS.1 FROM name.ZS.k : input, input,...;

^ • 1 T O n a m e . X S . r , n a m e . X S . s , . . . : o u t p u t , o u t p u t , . . . ;

defzsinit : zs.1 ;

deftdel : Tdel;

END;

Figure 2.8. Static delay specification format

G. Queue

The format for specifying a queue (QUE) is presented in Figure 2.9.

QUE name : interlaced

XP.2 FROM name.^.i : input, input,... ;

22-2 FROM name.ZP.j : deq;

^ • 1 T O n a m e . X P . k , n a m e . X P . l , . . . : o u t p u t , o u t p u t , . . . ;

^*1 TO name.XS.m, name.XS.n,... : open, closedempty, closednotempty;

deftenq : Tenq;

deftdeq : Tdeq;

END;

Figure 2.9. Queue specification format

A queue has a single data input and output streams (XP.l and ZP.l)

for which the user enumerates identical sets of signal values.

Additionally, a queue has single control input stream (XP.2) and output

www.manaraa.com

37

stream (ZS.l). The static control output indicates in which of the three

control states the queue resides. Â queue operates as follows:

1) If a pulsed data input arrives at an open queue, it pulses

the data out and goes to the closedempty control state.

2) If a pulsed data input arrives at a closed queue, it stores the

data in FIFO order and assumes the closednotempty control

state.

3) If the deq control input arrives at a closednotempty queue, the

oldest stored data is dequeued and pulsed out. If no more data

items remain in the queue, the control state becomes

closedempty.

4) If the deq control input arrives at a closedempty queue, the

queue assumes the open control state; no pulsed output is

produced.

5) There are two independent busy time intervals, Tenq and Tdeq,

associated with queue operation. These limit rates at which

successive data inputs and control deq's can be validly Imposed

on the queue.

H. Derivative

The format for specifying a derivative (DER) is presented in Figure

2.10.

A derivative has a single static binary input and a single pulsed

output. A DER detects rising and falling edges in the static input and

pulses out and f^ as appropriate. A DER is an Idealized function; it

www.manaraa.com

38

is never busy and can respond to an arbitrarily large number of edges

a finite time interval.

PER name : interlaced

XS.l FROM name.ZS.i : 0, 1 (or h, 1);

M*1 name. ZP. j, name.ZP.k,... : r, f;

END;

Figure 2.10. Derivative specification format

I. Clock

The format for specifying a clock (CLK) is presented in Figure

2 . 1 1 .

CLK name : interlaced

XP.1 FROM name•ZP.i : reset, start ;

IZ'l Ï2 name.XP.j, name.XP.k,... : timeout;

^.1 TO name.XS.l, name.XS•m.... : reset, running, expired;

deftclk : Tclk;

END;

Figure 2.11. Clock specification format

www.manaraa.com

39

A clock is a controlled timer with a fixed timeout period, Tclk,

specified in deftclk.

A clock has a single pulsed control input and a pulsed and a static

control outputs. The static control output indicates the control state

of the clock; it has two stable states, reset and expired. The reset

input always drives the clock into the reset control state. The start

input always initializes the timer function of the clock and puts it in

the running control state. If allowed to run to completion, (i.e., not

started or reset in the Tclk time interval since the last start) the

clock pulses out a timeout and assumes the expired control state.

A CLK is an idealized function; it is never busy and reacts

instantly to control inputs.

J. Environment

The environment component type gives the system designer or

simulation user the freedom to name and connect-in a component whose

behavior is not easily (if at all) specifiable as an instance of one of

the eight basic component types already described. Two versions of ENV

are specifiable in SAN:

terminal, which allows the simulation operator to connect into

the system as a component during simulation execution through his

terminal; when an ENV of this type is executing, the operator uses

the on-line Terminal Mode Command Language (described in the next

section) to interactively query the status of the global system,

change the values of ENV parameters, store profiles of system

www.manaraa.com

40

variables, set ENV output variables and schedule future ENV

executions.

procedure, which allows the user to define the component operation

via a general PASCAL procedure; in such a procedure the user may

access all the system variables by global name references and may

Introduce new variables local to the ENV; the procedure can also

invoke the functions of the on-line Terminal Mode Command Language

by appropriate calls to built in monitor procedures.

The format for specifying a terminal ENV is presented in Figure

2.12. The ENV is named; the ranges and connections of all input and

output variables are enumerated; the ENV type (terminal) is declared;

the default (initial) values of all static outputs are given in defszinit.

The busy time Interval length, Texec, is specified in deftexec. Whether

multiple simultaneous pulsed inputs to this single ENV component should be

trapped is specified by assigning true ox false to mulpulsecheck.

The ENV will be scheduled for execution during a simulation run

when one of the following conditions occurs:

—a pulsed input arrives at the ENV.

—the boolean expression given in STARTEXP evaluates to true. The

boolean expression is provided by the user and can involve some

of the global system variables as described in the syntax diagram

in the Appendix; the boolean expression is evaluated and tested by

the simulator during execution at the times specified in

www.manaraa.com

41

ENV name : interlaced

j. FROM name. ZP. i : input, input,...

FROM name.ZP• .1 ; input, input,...

XS.jL FROM name.ZS.k : input, input,..

XS.2 FROM name.^.1 : input, input,..

^.1 TO name.XP.m, name.XP.n,

^.2 TO name.XP.p, name.XP.q,
output, output,

output, output,

TO name.XS.r, name.XS.s ,
^.2 TO name.XS.t, name.XS.u,

output, output,
output, output.

FUNCTION : terminal ;

I alternatively, FUNCTION : procedure

... PASCAL procedure ...

END ; j

defzsinit : zs.l, zs. 2 , . . . ;

deftexec : Texec;

mulpulsecheck : boolean j

STARTEXP : boolean expression ;

STARTEXPCHECK : never (or everytimechange or everyevenf) ;

END;

Figure 2.12. Terminal and procedure environment specification formats

www.manaraa.com

42

STARTEXPCHECK i.e., never, or at the completion of every

simulated time interval (everytimechange), or after every

simulated event (everyevent).

—the time has arrived for a start event previously filed for this

ENV by the user with the Terminal Mode Command Language.

The format for specifying a procedure ENV is presented in Figure

2.12.

The use of general PASCAL procedures in the ENV component requires

knowledge of the data structures and the global system variables used in

the State Architecture Simulator (SAS) of the SAN model being simulated.

The remaining paragraphs of this section which explains the use of

general PASCAL procedures in ENV may be skipped until the SAS

implementation has been discussed.

Within an ENV procedure, the user basically can access all the

global system variables; however, only a subset of global system

variables, which are useful to the users, are discussed in this

dissertation. Users interested in all possibilities should study the SAS

source listings. One group of these system variables are those related to

the current state, input/output, and execution state of individual

components. The detailed system variable names are shown in Figure 2.13.

Notice that to reference a user component, the special prefix 'U$' is

appended to the beginning of the component name. The reason is to

distinguish the user component names from the PASCAL reserved words and

the SAS variables used in the procedure.

www.manaraa.com

43

Another group of system variables, which may be set to control

simulator execution, is shown in Figure 2.14. The type of value

assigned to each system variable will be discussed in the next chapter.

The user can define new variables local to each ENV procedure. Besides

the use of global system variables, the user can access some of the

system procedures. Only those typically useful system procedures are

shown in Figure 2.15. Examples on using system procedures will be

provided in Chapter IV.

www.manaraa.com

Variables

fsm[U$name].es

.cxp[i]

.cxs[i]

.czp[i]

.czs[l]

•execstatus

cfp[U$nanie] .cxp[i]

.cxs[l]

.czp[i]

.execstatus

cfs[U$name].cxs[i]

.czs[i]

.execstatus

delp [U $name] .cxp [1]

.czp[l]

.execstatus

dels [U$name] .cxs [1]

.czs[l]

•execstatus

der[U$name].cs

.cxs[l]

.czp[l]

.execstatus

Meaning

The current state, the i^^ current

pulsed input, static input, pulsed

output, static output and the execu­

tion state of the named FSM.

the i^^ current pulsed input, static

input, pulsed output and the execu­

tion state of the named CFP.

the i*-^ current static input, static

output and the execution state of

the named CPS.

the first current pulsed input,

pulsed output and the execution state

of the named DELP.

the first current static input,

static output and the execution state

of the named DELS.

the current state, the first current

static input, pulsed output and the
execution state of the named DER.

www.manaraa.com

clk[U$name].es.state

.es.time

.exp[l]

.ezp[l]

.ezs[l]

.execstatus

que[U$name].cxp[i]

.czp[l]

.czs[l]

.cs.state

.cs.slze

.enqstatus

.deqstatus

env[U $name].cxp[i]

.cxs[i]

.czp[l]

.czs[i]

.execstatus
.tstart

•updatestate.task

.updatestate.ntzp[i]

.updatestate.ntz[l]

.updatestate.time

the current control state, the clock

start time, the first current pulsed

input, pulsed output, static output

and the execution state of the named
CLK.

the i^^ current pulsed input, the

first current pulsed output, static

output, control state queue size, the
execution state with respect to

loading data, and the execution state

with respect to dequeueing data from

the named QUE.

the i^^ current pulsed input, static

input, pulsed output, static output,

the execution state, the prescheduled

time of a future start event, the

indication of a future start event,

the i^^ next pulsed output, static

output and the next update time of

the named ENV.

Figure 2.13. Global system variables related to the status of each

component

www.manaraa.com

46

Variables Meanings

file_event

file_kind

file_name

flle_tlme

seed

syshalt

tbi^g

tend

tnow

the event type of the next event to

be scheduled in the event file.

the component kind of the next event

to be scheduled in the event file.

the component name of the next event

to be scheduled in the event file.

the event executon time of the next

event to be scheduled in the event

file.

the seed value for the random number
generator.

system half variables, true means

simulation execution is stopped.

beginning of the simulation time.

ending of the simulation time.

current simulation time.

Figure 2.14. Global system variables which can be set to control

simulator execution

www.manaraa.com

Procedure names

pname(U$name)

pall

peventfile(output)

sname(U$name)

sail

azp(n,zp)

azs(n,zs)

astartcheck(option)

fabs(T)

Description

Print the status of the named component.

Print the status of all the system
components

Print the contents of the event file

Save the current status of the named

component in the system data file

Save the current status of all the system
components in the system data file

Assign the value zp to the indexed pulsed

output of the currently executing

environment

Assign the value zs to the Indexed static

output of the currently executing

environment

Assign the value option (never,

everytimechange or everyevent) to the

currently executing environment

Schedule a future start event for the
currently executing environment at time T,

T must be greater than or equal to tnow

www.manaraa.com

finc(T) Schedule a future start event for the

currently executing environment at time

tnow + T, T must be greater than or equal
to zero

uabs(T) Schedule an update event for the currently

executing environment at time T, T must be

greater than or equal to tnow, this

command makes the currently executing
environment busy until T

uinc(T) Schedule an update event for the currently
executing environment at time tnow + T, T

must be greater than or equal to zero,

this command makes the environment busy
until tnow + T

randint(max) A function that returns a random integer

between 1 and max.

Figure 2.15. Definition of user accessible SAS procedures

www.manaraa.com

49

III. STATE ARCHITECTURE SIMULATOR

A. Overview of the State Architecture Simulator

The State Architecture Simulator (SAS) Is made up of a VAX command

language program, named SAS.COM, and two PASCAL programs namely

TRANSFORM.PAS and SAS.PAS. The SAS compiles, executes, and reports on

simulations of user supplied SAN models. SAS was developed and is running

on a VAX 11/780 at Iowa State University using the VAX VMS V2.0 operating

system.

The control of the SAS environment is governed by the VAX command

language program, SAS.COM. Here, we will present an overview of the

control structure of the SAS environment as shown in Figure 3.1.

The SAS begins by performing Transformation (2) on a user supplied

SAN System Specification (1). In this step, the SAS scans the SAN

Specification and compiles the non-PASCAL portions of the specification

into equivalent PASCAL source code modules (3). Control is then passed

to the PASCAL Compiler (4) which compiles the source modules into object

modules (5). The object modules are then linked (7) to a set of

standard pre-compiled SAS modules (6) creating a robust executable file

(8) corresponding to the original system specified by the user. Control

then passes to the executable system simulation file which proceeds

through three major steps:

www.manaraa.com

50

SAN SYSTEM
SPECIFICA­

TION
(data file)

OBJECT
PASCAL
MODULES
(object
file).

I
I
l

(2)
TRANSFORMATION

(executable file)

1
I
I
I

(4)

PASCAL

COMPILER

(7)

PASCAL

LINKER

—> data flow

"> control flow

(12)

TERMINAL

DATA IN

INITIALIZATION

SYSTEM

EXECUTIVE

(8)

EXECUTABLE SYSTEM

SIMULATION

(executable file)

SOURCE
PASCAL
MODULES
(source
file)

PRECOMPILED
SAS MODULES

(object
file)

^PERFORMANCE

DATA

(data file)

SYSTEM
STATUS

data file

(11)
RESTART

INITIALIZA­
TION DATA

(data file)

Figure 3.1. Control structure of the SAS environment

www.manaraa.com

51

Data Input: scans the original SAN system specification,

extracting those model parameters that are stored as table

entries in the simulation (e.g., component input/output sets,

execution times).

Initialization: can be either new or old (restart). For a

new initialization, the SAS computes initial static outputs

and inputs for all components based on their initial or

default values. The SAS then examines that all initial

component outputs are functionally and stably consistent with

the given initial component inputs. If the system is

unstable, simulation execution terminates at this point. For

an old initialization, the SAS reloads the simulated system

status from the restart initialization data file (11), which

had stored the system status at the end of a previous system

execution.

System Executive: carries out the simulated execution of the

user's system. Performance trace reports are entered as

appropriate in a performance data file (9); system status

reports are entered in the system data file (10); user inter­

action with the model through the execution of terminal

environment components is carried out through the user's

terminal. SAS error reports are also made to the user via

the terminal.

www.manaraa.com

52

The System Executive synchronizes most of the simulation model

activities using an event file, the structure of which is shown in Figure

3.2. Events associated with the same simulation time are grouped in the

same event set. The entry for each event specifies the kind and name of

basic component and the type of event involved.

Events are removed from the event file and acted upon in simulation

time in chronological order, events within an event set being selected

randomly.

Events are added to the event file (scheduled) as a result of

component response to the currently executing event (e.g., pulsed output

to a new component, future timeout for a starting clock).

Simulation time is advanced every time the current event set becomes

empty. SAS steps through a series of values to pick up any scheduled

environments or trace procedures prior to taking the value corresponding

to that of the next event set in the event file.

The simulation halts when the preset simulation halt-time. Tend, is

exceeded, or when the user invokes a halt through the Terminal Mode

Command Language.

Whenever a terminal environment executes or a system error occurs,

the system executive makes the on-line command monitor available to the

user through the user terminal.

SAS offers several trace functions. In particular, the user may

specify that SAS sample and save the value of any specified set of SAN

system variables or the values of specified boolean expressions of the

www.manaraa.com

53

time count
1 1

1 next j

• 1
nextevent |

. 1

I

kind nsme action next

kind name action next

t
time count next nextevent

kind name action next

kind name action noxt

time count next nextevent

kind name action next

Figure 3.2. Event file structure

www.manaraa.com

54

SAN system variables. The trace functions are Invoked by augmenting the

initial SAN system model with one or more instances of the three kinds

of trace specifications as described in Chapter III.F.8.

At the termination of a simulation run, and at the user's option,

the final status of the total simulation system is saved in the restart

initialization file. The final status file of the run can be used at a

later time to initialize a new simulation run that will continue from the

state in which the initial run stopped.

The user may optionally include an initialization specification

(INIT) in the SAN system specification in which is indicated the values

of simulation time at which the run should begin and end and whether SAS

should trap multiple simultaneous pulsed inputs to single components.

SAS consists of three programs, which are made up of modules of

procedures. The first program, TRANSFORM.PAS, implements the

transformation process and is made up of four modules of PASCAL

procedures; namely: TRANPARAM, TRANSFORM, TRANSM, and TRANSUP. The

second program, SAS.PAS, implements the Data Input, Initialization and

System Executive processes. This program is made up of fourteen

predefined modules of PASCAL procedures; namely: DATASTRU, SAS, DATAIN,

HIST, INIT, ERROR, INILOAD, RELOAD, INTERNAL, SM, SCHEDULE, TERM, SMPS,

STATSAVE, and a user defined module of PASCAL procedures called USER.

USER is generated by the transformation process in compiling the procedure

portions of the SAN specification into equivalent PASCAL source code

www.manaraa.com

55

modules. The third program Is a VAX command language program called

SAS.COM.

SAS.COM governs the control of the SAS environment. SAS.COM first

Invokes the Transformation process; then the PASCAL compiler and linker

are invoked to compile the PASCAL module, USER, and to link USER.obj, the

USER object file, with the precompiled SAS.obj to produce a system

executable image. SAS.COM then executes the system executable image.

In the SAS discussion below, the SAS source listings are frequently

referenced. The listings^ accompany this dissertation in a separate

binding. To help locate the source lines, the source listings are

separated into twenty modules. To reference a line in a particular

module, the module number and the line number within the module (module

number, line number) are Indicated. The module names and their

corresponding module numbers are shown in Table 3.1. For example,

maxstrlength = 40; appears In line fifteen of the module DATASTRU, which

is the first module. This line is referenced by (1, 15).

The following sections will present a detailed overview of the SAS

implementation. First, we will describe the data structures of the SAS

program; how the SAS keeps track of the necessary data of each

component, the event file, and the performance trace.

^The listings can be obtained from the author.

www.manaraa.com

56

Table 3.1. SAS program modules reference table

Function Module Name Module Number

Data Structure DATASTRU.PAS 1

Data Input SAS.PAS 2

DATAIN.PAS 3

HIST.PAS 4

INIT.PAS 5

ERROR.PAS 6

Initialization INILOAD.PAS 7

RELOAD.PAS 8

System Executive INTERNAL.PAS 9

SM.PAS 10

SCHEDULE.PAS 11

TERM.PAS 12
SMPS.PAS 13

STATSAVE.PAS 14

Transformation TRANPARAM.PAS 15

TRANSFORM.PAS 16

TRANSM.PAS 17

TRANSUP.PAS 18

Operation Steps SAS.COM 19

User USER.PAS 20

Second, the function of the Transformation process will be

described: how the Transformation process scans through the user defined

SAN model to generate a set of PASCAL compatible procedures. Third, we

will describe the Data Input process: how the Data Input process scans

through the user defined SAN models to check the SAN syntax and to

establish the simulated system in the PASCAL data structure environment.

www.manaraa.com

57

Fourth, we will describe the Initialization process. Fifth, we will

describe the System Executive, which is the heart of the simulated

system execution process.

B. Data Structure

This section presents an overview of the major data structures used

in the SAS implementation. The serious reader is advised to have a

general idea of the data structures of SAS before studying the SAS

implementation. In the course of studying the SAS implementation,

readers should not hesitate to reference the data structures file,

DATASTRU.PAS, in order to understand the SAS implementation. As an aid

to clear exposition, all occurrences of constant, type, variable and

procedure names in the SAS.PAS program will be underlined in this

section.

The following paragraphs will describe the philosophy of string

usage, the constant and type declaration of the DATASTRU.PAS file, and

highlight the data structures for components, event file, and performance

trace.

1. Philosophy of string usage

The user can use arbitrary alphanumeric strings to name different

kinds of components and to assign state, input and output variables. In

this way, the user can name the component, state, input and output values

according to their generic names, which provides a better feeling and

www.manaraa.com

58

understanding of the SAN model. However, string type may not apply to

each kind of PASCAL variable. In SAS, each component is referenced via an

array indexed by the component enumerated name, e.g. fsm: array [fsmname]

of single fsm (1, 601). All FSM components are referenced in the array

fsm indexed by their component enumerated names. In PASCAL, the array

index cannot be a string. To get around the problem, all the component

names (alphanumeric strings) are mapped in one-to-one correspondence to

the SAS predefined enumerated names. In this case, the user can still

specify and refer to the components via their generic names while the SAS

translates the component names into enumerated names used by SAS. The

details on the translation (transformation) will be discussed in the

Transformation process. Chapter III.C.

2. Constant and type declaration

In the DATASTRU.PAS file, there is a set of predefined constants

which are not changed throughout the SAS execution. Some of the values

for the constants are arbitrarily assigned and some are intentionally

assigned to set a limit for the size of the SAN models. In the present

implementation, the SAN models are allowed to have a maximum of 162

components (1, 7); the maximum length of a string is 40 characters (1,

15). The maximum number of the pulsed or static input/output streams of a

component is 20 each (1, 18); the maximum number of fanouts from an output

is 10 (1, 20). Besides that, a set of integer constants (1, 25) are

defined for error messages in the SAN syntax and a set of integer

constants (1, 40) for error messages during the SAS execution. There are

www.manaraa.com

59

constants defined for the SAN delimeters (1, 54) and also a set of string

constants (1, 63) for the SAN and SAS special symbols. All of them are

listed in the DATASTRU.PAS file.

The SAS defines smname (1, 157) as a set of enumerated names for

components. The enumerated names, S$UNCONNECTED, S$SYSTEM-MONITOR, fsmO,

cfpO, cfsO, delpO, delsO, queO, clkO, derO and envO are reserved for the

SAS system. S$UNCONNECTED are regarded as unconnected. S$SYSTEM-MONITOR

is a terminal ENV, which allows the user to examine the system status

whenever a system execution error occurs. fsmO, cfpO, cfsO, delpO, delsO,

queO, clkO, derO, and envO are used by SAS to indicate that there is no

user defined FSM, CFP, CPS, DEL?, DELS, QUE, CLK, DER and ENV components,

respectively. The rest of the enumerated names are used to map with user

defined component names, so that there is a one-to-one correspondence

between the user defined component names and the enumerated names. The

SAS separates all the enumerated names into nine groups according to nine

kinds of components. There are fifty-two enumerated names assigned for

FSM components ranging from S$UNCONNECTED to fsm50 (1, 174).

S$UNCONNECTED and fsmO are reserved for the SAS system and the other fifty

enumerated names, fsml to fsm50, are used for user defined FSM components.

In the same manner, CFP has twenty enumerated names ranging from cfpl to

cfp20, for user defined CFP components; CFS has twenty, ranging from cfsl

to cfs20; DELP has ten, ranging from delpl to delplO; DELS has ten,

ranging from delsl to delslO; QUE has ten, ranging from quel to quelO; CLK

has ten, ranging from clkl to clklO; DER has ten, ranging from derl to

derlO; ENV has twenty, ranging from envl to env20.

www.manaraa.com

60

3. Components

All component characteristics are kept in an array indexed by an

enumerated name. Each kind of component has its own array name. The

FSMs are represented by the array, fsm[fsmname] (1, 601), and indexed by

a member of the FSM enumerated name, fsmname. Each FSM array has a

record of elements, singlefsm (1, 261), holding all the information on

the FSM component. The singlefsm holds the following information:

2 a linked list for the state set

XP a linked list for the pulsed input set

nXP number of pulsed input streams

XS a linked list for the static input set

nXS number of static input streams

ZP a linked list for the pulsed output set

nZP number of pulsed output streams

ZS a linked list for the static output set

nZS number of static output streams

fnsfirst a linked list for the list of FNS vectors

fnstype type of FNS function (procedure or list)

fnsproc a number corresponding to the case index of the FNS

procedure in the procedure fsmfunction, which

contains all the procedures defined in the FSM

components

foutpfirst a linked list for the list of FOUTP vectors

foutptype type of FOUTS function (procedure or list)

www.manaraa.com

61

foutpproc a number corresponding to the case index of the FOUTP

procedure in the procedure fsmfunction

foutsfirst a linked list for the list of POUTS vectors

foutstype type of POUTS function (procedure or list)

foutsproc a number corresponding to the case index of the POUTS

procedure in the procedure fsmfunction

destzp a record storing the destinations for each pulsed output

stream

destzs a record storing the destinations for each static output

stream

texec time required to execute the component

execution status of the component; it can be Idle, Pend,

or Busy

current state value

the value of the current pulsed inputs

the value of the current static inputs

the value of the current pulsed outputs

the value of the current static outputs

a boolean value representing whether the current static

inputs have been changed at the current simulation time,

tnow

updatestate an update record storing the next update time, next

state, next pulsed outputs, next static outputs and

the task of the update process

execstatus

cs

CX£

cxs

czp

czs

cxsload

www.manaraa.com

62

The updatestate record Is a general purpose update record (1,251).

Not all the elements in the update record are applicable to each kind of

component. For example, the task entry with valid values (notask,

delete, add) is used by a queue to indicate whether data is to be added

into or deleted from the queue in the update operation.

The above discussion of a single FSM data structure can be

generally applied to all the other kinds of components. The details of

each kind of component will not be discussed here, but they are listed

in the DATASTRU.PAS file.

4. Event file

The event file is organized in a multi-linked list structure as

shown in Figure 3.2. The multi-linked list groups all the events with

the same execution time into one event set and those events with

different execution times into different event sets. Each eventsetentry

(1, 493) has a record of elements which consists of the following:

time the execution time of the event set

count the total number of event entries in the event set

nextevent a pointer to the first event entry of the event set

next a pointer to the next event set

Each evententry (1, 485) within an event set also has a record of

elements which consists of the following:

kind the kind of the component

name the name of the component

action the type of event (start or update)

www.manaraa.com

63

next a pointer to the next event entry within the event set

Event sets are organized in chronological order. The event set

with the lowest execution time is stored on the top of the list. Within

an event set, the event entries with ENV kind are stored on the top of

the list; the event entries with the other kinds of components are

stored below the ENV kind. The ENV kind events are given higher

priority to be executed within an event set because when an ENV

component is in terminal mode, we want the user to always have first

chance to examine the system.

5. Performance trace

SAS offers three types of trace functions. They are the regular

variable history, conditional variable history and regular expression

history. Each of the trace functions is organized in a multi-linked

list structure.

The data structure for a set of regular variable histories is shown

in Figure 3.3. Each instance of a regular variable history is

represented by a varhistregentry (1, 541) record. All the

varhistregentry records are linked together in a linear linked list.

The first instance of the varhistregentry is pointed to by the regular

variable history header, varhistregpt (1, 633). The varhistregentry

record (1, 541) consists of the following information:

histname the name of the regular variable history instance

www.manaraa.com

64

varhlstregpt

hlstname

varstat

dthlst

ntsave

checkopt

next

hlstname

varstat

dthlst

checkopt

next

r
/:

hlstname

dthlst

ntsave

checkopt

next

•a

stattlrst

next hvalue

stattlrst

next

name

stattlrst

next

hvalue

time

next

-a

Figure 3.3. Data structure of a set of regular variable histories

www.manaraa.com

65

num the order of the regular variable history

Instance's occurrence, e.g., 1 implies the first

regular variable history instance

varstat a header pointing to the first record of a variable

history

dthist the simulation time intervals at which the set

of variables value are to be recorded

ntsave the next simulation time for the set of

variable values to be recorded

checkopt the frequency for which the set of variables

are to be recorded at the recording time

(everyevent means a sample is recorded after

every event executed at the recording time;

everytimechange means precisely one sample is

recorded just before advancing simulation time

forward from the current recording time;

never means the trace is disabled)

next a pointer pointing to the next regular variable

history record

For each variable, there is a variable history record called

histentry (1, 533) to save the trace of the variable. The histentry

consists of the following;

name the name of the variable

statflrst a pointer pointing to the first data element of

the variable

www.manaraa.com

66

next a pointer pointing to the next variable history

record

Each data element Is represented by a statentry (1, 504), which

consists of the following:

hvalue the value of the data element

time the time at which the data is recorded

next a pointer pointing to the next data element

The data structure for a set of conditional variable histories is

shown in Figure 3.4. Each instance of a conditional variable history is

represented by a varhlstconentry (1, 354) record. All the varhistconentry

records are linked together in a linear linked list like the

varhistregentry records. The first instance of the varhistconentry is

pointed to by the conditional variable history header, varhlstconpt (1,

634). The varhistconentry record is similar to the varhistregentry record

except that the varhistconentry record does not have the dthist and ntsave

entry to indicate the next simulation time the samples are recorded.

Instead, each instance of a conditional variable history has a boolean

expression. The boolean expression is evaluated at the times specified in

the checkopt entry. The variables are recorded at those times when the

boolean expression evaluates to true.

The data structure for a set of regular expression histories is

shown in Figure 3.5. Each instance of a regular expression history is

represented by an exphistentry (1, 564) record. All the exphistentry

records are linked together in a linear linked list like the

varhistregentry records. The first instance of the exphistentry is

www.manaraa.com

67

varhlstconpt

hlstname hlstname

varstat varstat

checkopt checkopt

next next

name

statflrst

next hvalue

next
name

statflrst

next

rt

hlstname

varstat

checkopt

next

hvalue

time

a

statflrst

rt-

Figure 3.4. Data structure of a set of conditional variable histories

www.manaraa.com

68

exphlstpt

hlstname

r expstat

dthlst

checkopt

7

C
hlstname

expstat

dthlst

ntaave

checkopt

next

r hlfltnnmft

expstat

dthlst

ntsave

checkopt

next

/

status

time

next

status

time

status

time

next

Figure 3.5. Data structure of a set of regular expression histories

www.manaraa.com

69

pointed to by the expression history header exphistpt (1, 635). The

exphistentry record is similar to the varhistregentry record except that

the exphistentry record has a expstat record pointer (1, 567) instead of

a varstat record pointer (I, 544). The expstat record pointer points to

a boolean status data element called statusentry (1, 514). Each

statusentry record consists of the following:

status the boolean value of the expression

time the time at which the expression was evaluated

next a pointer pointing to the next data element

C. Transformation

The function of the Transformation process is to compile the local

procedures and the boolean expressions in the SAN specification into

equivalent globally compatible procedures. All the global procedures

generated by the Transformation process are stored in USER.PAS. As an

aid to clear exposition, the Transformation process will be discussed in

reference to a simple SAN model as shown in Figure 3.6. This SAN model

has two ENV components and a FSM component. Three kinds of performance

traces and an initialization are also included in the simple SAN model.

1. Transformation of local procedures

In SAN, the Next State Function (FNS), Pulsed Output Function

(FOUTP), and Static Output Function (FOUTS) of a FSM, the FOUTP of a CFP

and the FOUTS of a CFS can be specified via the procedure option as

discussed in Chapter II. These local procedures have to be extracted

www.manaraa.com

70

ENV Terminal : Interlaced
ZP.1 TO Pu I segen.XP. 1 : start;
FUNCTION ! terminal;
deftexeo : 0.0;
STARTEXP ! true;
STARTEXPCHECK : everytIneohange;

END;

ENV Pulsegen : interlaced
XP.1 FROM Termina I.ZP.1 : start;
ZP.1 TO Counter.XP.1 : reset, Ino;
FUNCTION : procedure

procedure Pulsegenproc;
var i: integer;

a:arrayci..2] of string;
begin

aCl3:= reset
8[23: = ' lnc
l: = randint(5);
with envcUSPulsegen] , updatestate do
begin

lf(l=3) then ntzpcl]:=aC1]
else ntzpci]:=a[2];

end; lend with]
end;

END:
deftexeo:1.0;
STARTEXP : false;
STARTEXPCHECK : never;

END;

FSH Counter : interlaced
S : 0,1,2.3,1),5:
defsinit : 0;
XP.1 FROM Pulsegen.ZP.1 : reset,Ino;
ZS.1 UNCONNECTED : 0,1,2,3,4,5;
FNS : procedure

if oxp.1='reset' then nts:='0'
el se
beg in

If os='0' then nts:='1'
else If cs='1' then nts:='2'
else If os='2' then nts:='3'
else If os='3' then nts:='4'
else If os='U' then nts;='5'
else nts:='5';

end;
END;
FOUTS : procedure

ntzs.1:=nts;
END;
deftexeo : 0.0;

END;

VARHISTORY TraceCount : regular
VARIABLES : Counter.C2s.1 ;
DTHISTORY : 1.0;
CHECKOPT : everytImechange;

END;.

VARHISTORY TracePulse ; conditional
VARIABLES ; PuIsegen.czp.1 ;
CONDITION : Pu Isegen.czp.1 = 'reset';
CHECKOPT : everytimechange;

END:

EXPHISTORY Tracestatus : regular
EXPRESSION : (Pulsegen.czp.1='ino')and(Counter.czs.1='1
DTHISTORY : 1.0;
CHECKOPT : everytImechange;

END;

INIT
tbeg : 1.0;
tend : 10.0;

END;
Figure 3.6. A simple SAN model

www.manaraa.com

71

and transformed into globally compatible procedures in order to be

used by the SAS.PAS program. All the local procedures declared in the

FSM, CFP and CFS instances will be transformed and placed together in

procedures fsmfunction (20, 755), cfpfunction (20, 787) and cfsfunction

(20, 798), respectively. Each instance name is mapped into its

corresponding enumerated name according to its order of appearance in

the SAN specification. For example, the first FSM component, Counter,

in the SAN model is given the enumerated name, fsml (20, 910).

In the Transformation process of the local procedures in FSM

components, the following operations are done:

1) All the local state, input and output variable names are

transformed into their corresponding global PASCAL variables.

For example, the cxp.l in the FNS procedure of Counter is

transformed into fsm[fsml].cxp[l] (20, 762).

2) All the character strings declared in the local procedures

are mapped into the SAS defined string array: constval[i],

according to the order of the string appeared in the SAN

model. The character string is mapped into an array variable,

constval[i], so that the forty characters long string can be

shrunk to a twelve character variable. It will make the

indentation of the transformed procedure look better. For

example, 'reset' in the Counter's FNS procedure is mapped into

constval[l] (20, 762), '0' in the Counter°s FNS procedure is

mapped into constval[2] (20, 762).

www.manaraa.com

72

3) All the PASCAL reserved names remain unchanged, e.g., else if

(20, 766).

4) Each local procedure mapped into the procedure fsmfunction is

referenced by passing an integer to the procedure fsmfunction.

The number by which the local procedure is referenced is equal

to the order of the place the local procedure appeared in the

SAN model. For example, the FNS procedure of the Counter is the

first procedure to appear in the FSM component. This procedure

is referenced by passing an integer value 1 to the procedure

fsmfunction (20, 758).

The transformation of local procedures in CFP and CFS components is

the same as in the FSM components. In case there is no local procedure

declared in a FSM, CFP or CFS component, its corresponding procedures

fsmfunction, cfpfunction and cfsfunction consist only some dummy

statements. For example, there is no CFP local procedure declared in the

example SAN model. The procedure cfpfunction, which holds all the

transformed CFP local procedures, has only some dummy statements. The

dummy statements (20, 790-796) are a convenience to the designer and also

allow the dummy procedure to return an error message in case the dummy

procedure is called.

2. Transformation of ENV procedure

The procedures defined in the ENV components are PASCAL compatible

procedures except that the component names used in referencing a

component should be their enumerated names. In the Transformation

www.manaraa.com

73

process, all these user defined component names are transformed into

their corresponding enumerated names. For example, U$Pulsegen in

the ENV procedure of the SAN model is transformed into its enumerated

name, env2 (20, 817). Each ENV procedure is named by appending a suffix

'proc' to the end of the ENV component name. For example, the ENV

procedure in the Pulsegen is named as Pulsegenproc. In order to

reference these ENV procedures, the procedure envfunction (20, 824) is

generated by the Transformation process. The procedure envfunction has

a case statement. The case statement branches off to call the proper

ENV procedure according to the integer passed to the procedure

envfunction. The order in which the ENV procedure names appear in the

procedure envfunction is the same as they appear in the SAN model.

3. Transformation of boolean expression in ENV

The boolean expression of the STARTEXP line of each ENV instance

in the SAN model is put under the boolean function envexpst

(20, 834). Each of those boolean expressions are assigned to the

boolean function variable envexpst. The order in which the boolean

expressions appear under the case statement of the boolean function

envexpst is the same order their corresponding ENV instances appeared in

the SAN model. In transporting the boolean expression from the SAN model

to the boolean function envexpst in the USER module, the following

transformations are done:

1) All the SAN global variables are transformed into PASCAL

compatible global variables.

www.manaraa.com

74

2) All the character strings declared in the boolean expression

are mapped into the SAS defined string array, constval[i]. as

was done in local procedure transformations.

3) All PASCAL reserved words remain the same.

In the example SAN model, there are two ENV instances. The

STARTEXP of one ENV instance has a simple boolean expression with a

constant value true and the other ENV instance has a constant value

false. These two simple boolean expressions are transported to the

boolean function envexpst (20, 834). The assignment statement (20, 839)

under the branch number 1 of the case statement is transported from the

first ENV instance. The assignment statement (20, 842) under the branch

number 2 of the case statement is transported from the second ENV

instance.

4. Transformation of regular variable history instances

The regular variable history trace is recorded via the procedure

historynum (20, 849), which is generated by the Transformation process.

The procedure historynum consists of a sequence of procedure calls to

procedure history (20, 854). The procedure history records the value of

the PASCAL global variables passed to the procedure. These variables are

extracted from the SAN global variables in the line VARIABLES of the

regular variable history instance. If there are N variables needed to be

traced in one regular history instance, N calls of the procedure history

are made to record the traces. In the example SAN model, a static output

variable, Counter.czs.l, is specified to be traced under the regular

www.manaraa.com

75

variable history Instance, Tracecount. Counter.czs.l is transformed into

its PASCAL global variable, fsm[fsml].czs.[l]; this variable is used as a

parameter passed to the procedure history (20, 854). There are also two

integer parameters to be passed to procedure history. The first integer

identifies the order of the regular variable history instance appearing in

the SAN model, the second integer identifies the order of the variables

appearing in the line VARIABLES of a regular variable history instance.

In the above example, the variable Counter.czs.l appears in the first

regular variables history instance and the variable is also the first one

appearing in the line VARIABLES. Therefore, the two integers passed to

the procedure history are both 1. All the history procedures for one set

of variables of a regular variable history instance are put together under

the same branch number of the case statement in procedure historynum (20,

853-855). The set of history procedures for the first regular variable

history instance are put under the branch number 1, the set of history

procedures for the second regular variable history instance are put under

the branch number 2 and so on.

5. Transformation of the conditional variable history

The conditional variable history traces are recorded via the boolean

function conexp (20, 861) and the procedure savehistcon (20, 874). They

are both generated by the Transformation process. The function conexp

consists of the boolean expressions specified in the CONDITION line of the

conditional variable history instances. The boolean expressions are

assigned to the function variable conexp (20, 866). In transporting the

www.manaraa.com

76

boolean expression from the SAN model to the function conexp, the SAN

global variables are transformed into PASCAL compatible global

variables; the character strings are mapped into the SAS defined

string array constvalfi] similar to the transformation of the boolean

expression in the ENV instance. If there is more than one conditional

variable history instance, the multiple boolean expressions are placed

under the case statement of the function conexp in the same order as the

conditional variable history instances appeared in the SAN model.

The procedure savehlstcon checks if the trace of the conditional

variable history is to be recorded by comparing the check option and

evaluating the boolean expression of the conditional variable history

instance (20, 882). If they evaluate true, the procedure stathist (20,

884) is called to record the trace of the variables, as specified in the

VARIABLES line of the conditional variable history instance. The SAN

global variables named in the VARIABLES line are transformed into PASCAL

campatible global variable as a parameter passed to the procedure

stathist. The number of times the procedure stathist is called is equal

to the number of listed variables in the trace needed to be recorded.

6. Transformation of the regular expression history

The boolean expressions of the regular expression histories are put

together in the boolean function cexpst (20, 890). The boolean

expressions of the regular expression histories are transported to the

boolean function cexpst in the same manner as the boolean expressions of

the conditional variable history are transported to the boolean function

www.manaraa.com

77

conexp (20, 861). In the example SAN model, there is a regular

expression history instance. The boolean expression of the regular

expression history instance is transformed and put into the boolean

function cexpst (20, 890). The boolean expression is assigned to the

boolean function variable cexpst (20, 895) and put under branch

number 1 of the case statement (20, 893-897). The boolean expression is

put under branch number 1 because the regular expression history in

which the boolean expression belonged to is the first one appearing in

the SAN model.

7. Generation of procedure iniset

One other procedure generated by the Transformation process is the

procedure iniset (20, 903). The procedure iniset assigns user defined

component names to the array smword[i] and assigns the corresponding

component enumerated name to the array smsym[i]. smword[l], smsym[l],

smword[2] and smsym[2] are reserved for the SAS system components

UNCONNECTED and SYSTEM-MONITOR (20, 905-908). smword[3]. smsym[3].

smword[4], smsym[4], and so on are for user defined component names and

their corresponding enumerated names. For example, the user defined

component name. Counter, is assigned to smword[3]; the counter's enumerated

name, fsml, is then assigned to smsym[3]. The enumerated names are

assigned to the component names in the following order: the first FSM

component appearing in the SAN model is assigned the enumerated name fsml;

the second appearing FSM component is assigned fsm2, and so on. The first

CFP component appearing in the SAN model is assigned the enumerated name

www.manaraa.com

78

cfpl; the second CFP component is assigned cfp2 and so on. As for CPS,

DELP, DELS, QUE, CLK, DER, and ENV components, they are also assigned in

the same manner. The details of the enumerated names for each kind of

component had been explained in the previous section (Data Structure).

The procedure iniset also assigns enumerated names to the SAS global

variables, which identify the first and last component enumerated name of

each kind of components. For example, there is only one user defined FSM

component; therefore, the first and last FSM component enumerated name

variables, fsmf and fsml are both assigned fsml (20, 916-917). There is

no user defined CFP component; the first and last CFP component enumerated

name variables, cfpf and cfpl, are both assigned cfpO (20, 918-919).

The SAS global variables which identify the set of enumerated

names for each kind of component (20, 934-942) are also initialized in

the procedure iniset. Finally, the procedure iniset establishes an

array of character strings, which are defined by the user in the local

procedures of the FNS, FOUTP and FOUTS and those in the boolean

expressions of the SAN model. The character strings which appeared in the

local procedures and the boolean expressions are extracted and assigned to

the character string array, constval[i], in the same order the character

strings appeared in the SAN model. For example, 'reset' the first user

defined character string appeared in the local procedure FNS is assigned

to constvalfl], '0' the second appeared character string is assigned to

constval[2] (20, 943-950).

www.manaraa.com

79

8. An overview of program TRANSFORM

The program TRANSFORM Implements the Transformation process as

described in the above sub-sections. The program TRANSFORM consists of

four modules of PASCAL source code namely: TRANPARAM.PAS,

TRANSFORM.PAS, TRANSM.PAS and TRANSUP.PUS. TRANPARAM.PAS (15, 1-148) is

a declaration file. This file consists of all the global constant

(const), type, and variables (var) declarations used by the procedures

of the program TRANSFORM. The module TRANSFORM.PAS consists of the main

program TRANSFORM and some other utility procedures. TRANSM.PAS and

TRANSUP.PAS consist of utility procedures called by the main program.

The names and the functions of the utility procedures used by the main

program will be described in the structure of the main program. The

program TRANSFORM reads in the SAN model from the logical file named

sanflle (15, 115). The program TRANSFORM generates a set of PASCAL

compatible procedures and functions, namely; fsmfunction, cfpfunction,

cfsfunction, envfunction, envexpst, historynum, conexp, savehistcon,

cexpst and iniset; they are temporarily saved in the logical files,

fsmfile, cfpflle, cfsfile, envfile, envexpstfile, hlstoryfile,

conexpfile, conhistflle, cexpstflle and Inisetfile (15, 117-126)

respectively. At the end of the execution of the program TRANSFORM, these

temporary files are merged together by the SAS command procedure SAS.COM

to a single module of PASCAL procedures and named USER.PAS. The program

TRANSFORM also generates an error message file, errfile (15, 116), to

record the error messages.

www.manaraa.com

80

The following sub-sections will describe the structure of the main

program TRANSFORM and the major procedures called by the main program.

The major procedures include tranfsm : processes the FSM instances;

trancfp; processes the CFP instances; trancfs; processes the CFS

Instances; resmname; processes the DELP, DELS, QUE, CLK, and DER

instances; tranenv; processes the ENV instances; tranvar, tranreg, and

trancon; process both the regular and conditional variable history

instances; tranexp; processes the regular expression history instances,

and inisetgen; generates the procedure iniset as described in

Chapter III.C.7.

9. Structure of program TRANSFORM

The program TRANSFORM controls the flow of the Transformation

process. The program starts out by assigning special strings to some

string variables. The string variables saword[i] (16, 819-828)

represent the local state and input/output variables named in the SAN

model. The string variables pasword[i} (16, 829-926) represent all the

PASCAL reserved words. The string variables sysword[i] (16, 927-935)

represent some of the SAS system variables recognized in the

Transformation process. The program then opens the SAN model

specification file for reading by calling reset(sanfile) (16, 936) and

opens the error message file to be written by calling rewrite(errflle)

(16, 937). After that, the headings of all the procedure modules which

will be generated by the Transformation process, are written into their

corresponding files (16, 942-959). For example, the headings for the

www.manaraa.com

81

procedure holding all the transformed local procedures in the CFP

components to be written into the cfpfile file, is as follows (20, 787-

790);

procedure cfpfunction (nura:Integer),

var cfpproc: integer,

begin

case num of

The number of the local procedures declared for each kind of components

are set to zero (16, 964-971). The headers for the list of each kind of

component are initialized to nil. The boolean variable sanend is set to

false indicating that the sanfile still has some components to be scanned.

Program TRANSFORM uses procedure readstr(var infile;text) (16, 198)

to access the SAN file, represented by a logical name sanfile. The SAN

file is scanned sequentially. In the beginning, procedure

reset(sanfile) (16, 936) is called to set the SAN file pointer to the

beginning of the SAN file. Everytime procedure readstr(sanfile) is

called, a string is read from the SAN file. A string is a sequence of

characters from the character set

symbol=['a'..'z'.. 'A'..'Z'. ' 0 '' 9 '. ' % '. (16. 158).

The character string is assigned to the global variable, tempstr.

Procedure readstr(sanfile) also returns the last character read, which

is not an element of symbol. The last character read is assigned to the

global variable, c^.

Procedure readstr(sanfile) starts out by setting tempstr to a string

with only blank characters (16, 201). Notice there is a write statement

www.manaraa.com

82

following each read statement in procedure readstr(sanflle). The purpose

is to copy all the processed string into the error file, errfile. In case

of any syntax error, the position of the last processed string can be

located from the errfile. The repeat loop (16, 204-218) reads a character

from the SAN file. If the character c^ is a blank, tab, or page mark

character, then the process is repeated. Basically, the repeat loop skips

all the leading blank, tab or page mark character of a string.

If the first character is a left brace, " then the characters

after the left brace are skipped until the right brace character is

encountered (16, 222-237). Lines (16, 222-237) allow procedure

readstr(sanfile) to skip all the comment statements. After all the

leading blank, tab, or page mark characters and the comment statements are

skipped, procedure readstr(sanfile) starts to read the string. The while

loop (16, 242-254) checks if the last character read is an element of the

character set, symbol, and if the string is still less than a^ (which is

forty) characters long, and eof(sanfile) is not true. The reading process

continues until one of the above check statements is false. Procedure

readstr(sanfile) sets tempstr to the last string read and sets c^ to the

last character read.

The program TRANSFORM then calls the procedure readstr (16, 988)

to read a character string from the sanfile. The procedure readstr

returns the character string in the string variable tempstr. Then a

while loop (16, 989-1002) is used to process all the component

specifications. The program will jump out of the while loop if the end

www.manaraa.com

83

of the sanflie is reached or sanend is true (16, 989). Inside the while

loop, tempstr is compared with the nine kinds of component name. If

tempstr equals FSMCON, then procedure tranfsm is called to process the

FSM component (16, 991). (The FSMCON, CFPCON and so on are global

constants declared in the data structure file for the strings 'FSM',

'CFP' and so on, respectively). If tempstr equals CFPCON, then procedure

trancfp is called to process the CFP component (16, 992). If tempstr

equals CFSCON, then procedure trancfs is called to process the CFS

component (16, 993). If tempstr equals DELPCON, DELSCON, CLKCON, QUECON

or DERCON, then procedure resmname is called by passing delpsym, delssym,

clksym, quesym or dersym to process the DELP, DELS, CLK, QUE or DER

component (16, 994-998). If tempstr equals ENVCON, then procedure tranenv

is called to process the ENV component (16, 999). If tempstr does not

equal any of the above component kinds, then sanend is set to true (16,

1000). If sanend is false, then procedure readstr is called again to read

another character string.

If sanend or eof(sanfile) is true (16, 989), then the program starts

to process the performance trace and initialization instances. This

process also uses a while loop (16, 1005). Inside the while loop, the

tempstr is compared to the various performance trace instance kinds and

the initialization instance. If tempstr equals VARHISTCON, then procedure

tranvar (16, 1007) is called to process the regular or conditional

variable history. If tempstr equals EXPHISTCON, then procedure tranexp

(16, 1008) is called to process the regular expression history. If

tempstr equals INITCON« then procedure traninit (16, 1009) is called to

www.manaraa.com

84

process the Initialization instance. If tempstr is not equal to any of

the above character strings, then procedure error(err33) (16, 1012) with

an error message number, is called. If any error occurs, then the

Transformation process will halt by calling the procedure stop (16, 1013).

If there is no error, then procedure readstr is called again to read in

another character string. The while loop process continues until the end

of the sanfile is reached.

After processing the SAN model, the ending parts of all the

procedure modules generated by the Transformation process are written

into their corresponding files (16, 1021-1030). For example, the ending

parts for the procedure holding all the transformed local procedures for

the CFP components to be written into the cfpfile file is as follows

(20, 779-782);

otherwise execerr(E26);

if errflag then execstop;

end; end of cfpfunction

The procedure Inisetgen (16, 1031) is called to generate the module

iniset. If there is any error encountered during the Transformation

process, procedure ptranerr (16, 1033) is called to print out the error

messages. At the end, the error message file is closed to finish the

whole Transformation process.

10. Procedure tranfsm, trancfp and trancfs

Procedure tranfsm (17, 443) transforms all the procedures defined

in the FSM instances of a SAN model into a globally compatible procedure

www.manaraa.com

85

fsmfunctlon (20, 755). Procedure tranfsm first reads the FSM component

name by calling readstr (17, 450). The FSM component name is stored

into the FSM component name linked list; the head of the linked list is

pointed to by fsmpt (17, 466). The procedure then skips all the

specification until the string 'FNS', 'END', or eof(sanfile) (17, 470)

is encountered. The syntax of the rest of the FSM specification will be

checked later in the Data Input process.

If tempstr equals 'FNS', the procedure saves the function type

(17, 475). The procedure then reads another string. If tempstr

equals 'procedure', the number of the FSM procedure is increased by

one (17, 484), the procedure heading (17, 485) and procedure transproc

(17, 486) are called to transform the local procedure into a globally

compatible procedure. If tempstr equals 'list', the procedure skipproc

(17, 489) is called to skip to the end of the FNS function

specification.

Procedure tranfsm then skips all other specifications until the

string 'FOUTP', 'FOUTS', 'END', or of(sanfile)(17. 497) is

encountered. If tempstr equals 'FOUTP' or 'FOUTS', the procedure goes

through similar steps to the FNS transformation (17, 499-544).

After processing FNS, FOUTP and FOUTS specifications, the procedure

skips all other lines until the string 'END' or eof(sanfile) (17, 543) is

encountered. The 'END' indicates the end of the FSM instance

specification. If procedure tranfsm encounters end of file before the

string 'END', the procedure error(err7)(17. 547) is called.

www.manaraa.com

86

Whenever the Transformation process encounters a syntax error, the

procedure error will be called. An error message is passed to the

procedure error via a predefined integer constant. In the above

example, the procedure error(err7) is called. err7 represents the

error message number 7. In procedure error (16, 261), the error message

number 7 means 'missing END at the end of a State Machine' (16, 317-

318).

Procedure trancfp (17, 554) transforms all the procedures defined in

a CFP instances in a SAN model into a globally compatible procedure

cfpfunction (20, 38). The process of transformation is similar to that

for a FSM except that procedure trancfp transforms only the local

procedure in the FOUTP specification. The details can be seen in the

procedure trancfp source listings (17, 554-613).

Procedure trancfs (17, 618) transforms all the procedures defined

in the CPS instances in a SAN model into a globally compatible procedure

cfsfunction (20, 48). The process of transformation is similar to that

for a FSM except that procedure trancfs transforms only the local

procedure in the FOUTS specification. The details can be seen in the

procedure trancfs source listings (17, 618-677).

11. Procedure resmname

Procedure resmname (17, 681) processes all the DELP, DELS, QUE, CLK

and DER components of a SAN model. Since all the components of the

above kinds have a predefined function and do not have any user defined

procedure, procedure resmname does not have to do any transformation

www.manaraa.com

87

beside recording all the component names. Procedure resmname first

reads the component name by calling readstr (17, 688). Depending on

the kind of component, the component name is stored into its

corresponding component name linked list (17, 703-710). The head of the

DELP, DELS, QUE, CLK and DER linked list is pointed to by delppt,

. delspt, quept, clkpt and derpt respectively. The procedure then skips

all the specification lines until the string 'END' or eof(sanfile) is

encountered (17, 714). If procedure resmname encounters end of file

before the string 'END', the procedure error(err7) (17, 717) is called.

12. Procedure tranenv

Procedure tranenv (17, 1111) transforms all the procedures and

boolean expressions defined in the ENV components of a SAN model into

globally compatible procedures and boolean expressions as described in

Chapter III.C.2 and Chapter III.C.3. Procedure tranenv first reads the

ENV component name by calling readstr (17, 1118). The ENV component name

is stored into the ENV component linked list, the head of the linked list

is pointed to by envpt (17, 1133). The procedure then skips all the

specification until the string 'FUNCTION', 'END', or eof(sanfile) (17,

1137) is encountered.

If procedure tranenv encounters 'END' or eof(sanfile) before

'FUNCTION', then procedure error(err36) (17, 1139) is called to report the

error. If tempstr equals 'FUNCTION', the procedure reads another string.

If tempstr equals 'procedure', the number of the ENV procedure is

increased by one (17, 1151) and the procedure dirtranp (17, 1152) is

www.manaraa.com

88

called to transform the ENV procedure as described in Chapter III.C.2. If

tempstr does not equal either 'procedure' or 'terminal', then procedure

error(err50) is called to report the error. Else, procedure tranenv

skips all other specifications until the string 'STARTEXP', 'END' or

eof(sanfile) is encountered. If tempstr does not equal 'STARTEXP', then

procedure error(err37) is called to report an error. Otherwise, it starts

the transformation of the expression as described in Chapter III.C.3. The

number of the ENV expression is increased by one (17, 1167). The headings

of the ENV expression to appear in the function envexpst (20, 83-96) are

written into the ENV expression file, envexpstfile (17, 1171-1175). The

procedure transexp is called to transform the SAN boolean expression into

a globally compatible boolean expression. After the boolean expression

transformation, procedure tranenv skips all other specification lines

until the string 'END' or eof(sanfile) is encountered (17, 1184). If the

procedure encounters end of file before the string 'END', the procedure

error(err7) (17, 1187) is called.

13. Procedures tranvar, tranreg and trancon

Procedure tranvar (17, 1416) identifies whether the current

variable history instance is a regular variable history or a conditional

variable history. Procedure tranvar first reads the variable history

instance name by calling procedure readstr (17, 1423). The instance

name is temporarily saved in the global variable chist (17, 1428). The

procedure then calls procedure readstr to read another string. If

tempstr equals 'regular', then the procedure tranreg is called; else, if

www.manaraa.com

89

tempstr equals 'conditional', then the procedure trançon is called; else,

the procedure error(err53) is called (17, 1433-1435). Procedure

tranvar then skips all the specification until the string 'END' or

eof(sanfile) is encountered (17, 1443). If the procedure encounters end

of file before the string 'END', the procedure error(err7) (17, 1444) is

called.

Procedure tranreg (17, 1299) is called by procedure tranvar to

transform the SAN global variables to PASCAL compatible variables and to

establish trace procedure historynum to record the variables trace as

described in Chapter III.C. 4. Procedure tranreg first initializes

the number of processed SAN global variables to be zero (17, 1305). The

procedure then reads a string by calling procedure readstr (17, 1307).

If tempstr does not equal 'VARIABLES', then procedure error(err59) (17,

1309) is called to report an error. If no error occurs at this point,

procedure tranreg will start the Transformation process. The procedure

first increases the number of regular variable history instances by one.

The procedure then writes the headings (17, 1319-1321) of the regular

variable instance into the file hlstoryfile for the procedure historynum

(20, 101). Procedure tranreg then calls procedure provar (17, 1327) to

transform the SAN global variables into PASCAL global compatible

variables; and increases the number of regular variable history

instances by one; these steps are repeated until all the SAN global

variables are processed which is indicated by a delimiter semicolon

(17, 1336). At the end, procedure tranreg writes the string 'end' to

www.manaraa.com

90

the file historyfile (20, 103) to indicate the end of all the variables

traced in a regular variable history instance.

Procedure trançon (17, 1349) is called by procedure tranvar to

transform the SAN global variables to PASCAL global compatible

variables, to transform the SAN boolean expression into a globally

compatible expression and to establish the boolean function conexp and

the procedure savehistcon for conditional variables to be traced as

described in Chapter III.C. 5. Procedure trancon goes through a

similar process to generate the procedure savehistcon as if procedure

tranreg generates the procedure historynum. Procedure savehistcon is

stored in the file conhistfile. After processing all the SAN variables

to generate procedure savehistcon, procedure trancon continues to

transform the SAN boolean expression in the conditional variable history

Instance. The procedure reads a string by calling the procedure readstr

(17, 1396). If tempstr does not equal 'CONDITION', then procedure

error(err54) (17, 1398) is called to report an error. The procedure

then writes the headings of the boolean expression to appear in the

boolean function conexp in the file conexpfile (17, 1402-1404). The

procedure transexp is called to transform the SAN boolean expression

into a globally compatible expression and to write it into the boolean

function conexp (20, 113). At the end, procedure trancon writes the

string 'end' in the file conexpfile (20, 114) to indicate the end of the

boolean expression for a conditional variable history instance.

www.manaraa.com

91

14. Procedure tranexp

Procedure tranexp transforms the SAN boolean expressions of all the

regular expression history instances into globally compatible

expressions and puts all the PASCAL expressions together in the boolean

function cexpst (20, 135) as described in Chapter III.C. 6. The

boolean function cexpst is stored in a temporary file cexpstfile.

Procedure tranexp first reads the expression history instance name (17,

1457) and temporarily stores the name in the global variable chist. The

procedure then reads another string. If tempstr equals 'regular', then

tranexp continues to read another string, else procedure error(err53)

(17, 1465) is called to report an error. If the next string is not

'EXPRESSION' (17, 1470), then procedure tranexp reports an error by

calling procedure error(err5).

If no error is encountered at this point, procedure tranexp

Increases the number of regular expression histories by one. The

procedure then writes the heading (17, 1479-1481) into the file

cexpstfile for the boolean function cexpst (20, 139). Procedure

transexp is then called to transform the SAN boolean expression into a

globally compatible expression and to write into the boolean function

cexpst (20, 140). Procedure tranexp then writes the string 'end' in the

file cexpstfile (20, 142). The procedure then skips all other

specification lines until the string 'END' or eof(sanflle) is

encountered. If procedure tranexp encounters end of file before the

string 'END', then It reports an error by calling procedure error(err7)

(17, 1509).

www.manaraa.com

92

15. Procedure Inisetgen

Procedure Inisetgen (18, 608) generates the procedure iniset (20,

903) as described in Chapter III.C. 7. Within the procedure

inisetgen, there is a procedure wsmws (18, 617-656), which is called by

procedure inisetgen to write the smword[i] and smsym[i] value of each

component (20, 905-914) in the file, inisetfifle. Procedure inisetgen

first writes the heading (18, 664-666) of the procedure iniset, which is

stored in the file inisetfile. In lines (18, 668-704), procedure

inisetgen writes all the corresponding smword[i] and smsym[i] into

procedure iniset (20, 905-914). Procedure inisetgen then writes the

first and last component name for each kind of component (18, 708-842)

into procedure iniset (18, 916-933). Procedure inisetgen continues to

write the set of component names of each kind of component (18, 846-854)

into procedure iniset (20, 934-942). Finally, procedure inisetgen

writes the array of string constants (18, 858-866) into procedure iniset

(20, 943-950), and writes the ending part of procedure iniset.

D. Data Input

The Data Input process reads the SAN system specification file to

configure the simulated system by establishing the interconnections, the

sets of state, inputs, and outputs, and output functions, and the next

state functions of the systèmes components. This process also

establishes the necessary default values for system component and

simulator variables. The system specification syntax is also checked

www.manaraa.com

93

against the SAN syntax as described in Chapter II. The details of the

syntax checking will be mentioned as we walk through the implementation

of the Data Input process. If the Data Input process encounters any

syntax error, the process writes the error message to the error file,

named errfile, and stops.

The Data Input process is located in line 867 to line 898 in the

SAS main program (1, 867-898). The Data Input process first reads in a

character string to identify the kind of component to be processed. If

the character string equals 'FSM', 'CFP', CPS', 'DEL?', 'DELS', 'QUE',

'CLK', 'DER', or 'ENV', then the procedure subfsm, subcfp, subcfs,

subdelp, subdels, subque, subclk, subder, or subenv, respectively, is

called to read information for the corresponding component (2, 867-884).

The above steps are continued until all the component specifications are

processed or the end of the SAN file eof(sanfile). is encountered.

If the character string does not identify one of the nine kinds of

components, the character string is examined to see if it denotes a

performance trace or initialization instance. If the character string

equals 'VARHISTORY', 'EXPHISTORY', or 'INIT', then the procedure

provarhist, proexphist, or prolndata is called to read the appropriate

information from the SAN file (2, 876-885). These steps are continued

until all the performance trace instances and the initialization

instance are processed (i.e., until the end of the SAN file). If there

is any component instance other than that of a performance trace or

initialization instance, then an error is reported by calling the

procedure error(err33) (2, 894).

www.manaraa.com

94

In the following subsections, we will describe the implementation

of all the major procedures of the Data Input process, namely: subfsm

(3, 2768). subcfp (3. 2847), subcfs (3. 2901), subdelp (3. 2955),

subdels (3, 3000), subque (3, 3050), subclk (2, 3115), subder (3, 3167),

subenv (3, 3204), provarhlst (4, 1006), proexphist (4, 1046), and

proindata (5, 745).

1. Procedure subfsm

Procedure subfsm (3, 2768) governs the sequence for processing each

FSM component specification. Procedure subfsm will call a set of

procedures, such as prosm, pros, proxp, proxs, prozp, prozs, profns,

profsmfoutp, and profsmfouts to process different lines of FSM component

specification. The function and the implementation details of these

procedures will be described after the description of the procedure

subfsm. We point out now that at the end of each of these procedures,

procedure readstr is called to read a character string for the next

procedure.

Procedure subfsm starts out by calling procedure prosm (3, 2773) to

process the first line of the FSM specification. Procedure subfsm then

expects the next line to be the state set specification. If the next

character string, tempstr, equals 'S', then procedure pros (3, 2775) is

called to process the 'Sline', as mentioned in the SAN syntax diagram in

the Appendix; else, the procedure error(err2) is called to report

a syntax error. The next line should be the default initial state

specification. If tempstr equals 'defsinit', then procedure subfsm

www.manaraa.com

95

processes the 'defsinitline'. Procedure readstr (3, 2783) is called to

read the default initial state value. The default initial state value

is checked as to whether it is a subset of the state set by calling the

procedure ckvalidset (3, 2785). If the default initial state value is

not a subset of the state set, then procedure error(err65) is called to

report an error (3, 2786); otherwise, the default initial state value is

inserted in the FSM component current state variable, fsin[tempsm].cs (3,

2789). Procedure readstr (3, 2792) is called to read a character string

for the next line.

If tempstr equals 'XP', then procedure proxp(fsmym) (3, 2798) is

called to process all the 'XPline' of the FSM component specification;

otherwise, procedure error(err3) is called to report an error. Since the

FSM specification has the option not to define any static input, pulsed

output or static output, the next line may be a XS, XP, or ZS line. If

tempstr equals 'XS', then procedure proxs(fsmsym) (3, 2800) is called to

process all the 'XSline'. If tempstr equals 'ZP', then procedure

prozp(fsmsym) (3, 280$) is called to process all the 'ZPline'. If

tempstr equals 'ZS', then procedure prozs(fsmsym) (3, 2808) is called to

process all the 'ZSline'.

After processing all the input and output specifications, procedure

subfsm starts to process the next state function and the output

function. For an FSM, there must be a next state function, FNS. If

tempstr equals 'FNS', then procedure profns (3, 2811) is called to

process the FNS specification, otherwise procedure error(err5) is

called. The FSM component may or may not have the FOUTP and FOUTS

www.manaraa.com

96

defined. If tempstr equals 'FOUTP', then procedure profsmfoutp (3, 2817)

is called to process the FOUTP specification. If tempstr equals 'FOUTS',

then procedure profsmfouts (3, 2818) is called to process the FOUTS

specification.

At the end, procedure subfsm expects the specification of the

default execution time. If tempstr equals 'deftexec', then procedure

prodeft(4) (3, 2821) is called to read the default execution time;

otherwise, procedure error(err40) is called to report an error. The

default execution time is assigned to the variable, fsm[tempsm].texec

(3, 2824). After the default execution time, procedure subfsm expects

an 'END' followed by a semicolon. If that is true, procedure subfsm

finishes processing a FSM component; otherwise, procedure error(err7)

(3, 2831) is called.

The remaining parts of this sub-section will describe the function

and the implementation details of procedures prosm, pros, proxp, proxs,

prozp, prozs, profns, profsmfoutp, and profsmfouts, which are called by

procedure subfsm to read the FSM specification.

a. Procedure prosm (kind ; smtype) (3, 1096); processes the

specification of the first line of the nine kinds of components.

Procedure prosm first checks if there is a blank character between the

specification of the kind and the component name. If it is not a blank

character, then procedure error(err24) is called. Procedure prosm then

calls procedure readstr and skipdel to read the name of the component

and skips all the blank characters following the component name.

Procedure cksmname(tempstr, tempsm, match) is then called to check if

www.manaraa.com

97

the component name, Identified by tempstr belongs to the set of

component names Identified by the Transformation process. If the

component name belongs to those component names, the variable match is

set true and the component's corresponding enumerated name is assigned

to the variable tempsm (3, 1104). If the component name does not belong

to those component names, procedure error(err34) is called (3, 1108).

Procedure prosm continues to read another character string by calling

procedure readstr. If tempstr does not equal 'interlace', then procedure

error(err30) is called; otherwise, procedure readstr (3, 1113) is called

to read a character string. The character string will be used by the

parent procedure, who called the procedure prosm, to identify the next

line of the specification. In this case, the parent procedure is

subfsm, which called procedure prosm to process the first line of a FSM

component specification. The next character string read by the

procedure readstr (3, 1113), at the end of the procedure prosm, should be

the state set character string, 'S'.

b. Procedure pros (3, 1120); processes the 'Sline*

specification of the FSM components. Procedure pros first checks if the

last character read by the procedure readstr is a blank character. If

the last character, £ (3, 1125), is a blank character, then procedure

readstr is called to skip to the next delimiter. Procedure pros checks

if the delimeter is a colon (3, 1129); if £ does not equal then

procedure error(err20) is called.

Procedure pros continues to read the state set values by repeatedly

calling procedure readstr (3, 1135); each value is stored in a linked

www.manaraa.com

98

list pointed to by the header, fsm[tempsm].S (3, 1145-1148). This

process is repeated until the delimiter is a semicolon (3, 1151). If

the number of state set values Is greater than nSmax, which is 100, then

procedure error(err9) is called. At the end, procedure readstr is

called to read a character string for the next line of the

specification.

c. Procedure proxp(kind;smtype) (3, 1164); processes the

'XPline' specification of all the components. The local variable kind

(3, 1164) is passed to procedure proxp to identify the kind of component

being processed. In the beginning, the local variable is initialized

to zero to indicate the number of processed XP inputs. In lines (3,

1179-1181), the number of processed XP input is increased by one, the XP

number is read by the read statement; and if the XP number, xpnum, does

not equal ̂ then procedure error(errll) is called. Procedure readstr is

called. If tempstr does not equal 'FROM' or 'UNCONNECTED', then

procedure error(err31) is called. If tempstr equals 'FROM' and the

delimiter is a blank or tab character, then procedure readstr (3, 1191)

is called to read the source component name. Procedure

cksmname(tempstr, sourcesm, match) (3, 1194) is called to check if

tempstr belongs to the predefined component names. If it does,

procedure cksmname returns with the variable match equal to true and

the variable sourcesm equal to the corresponding enumerated name of the

component.

In lines (3, 1200-1214), if the source is unconnected, then

procedure skipdel (3, 1200) is called to skip to the next delimiter;

www.manaraa.com

99

else, the regular pulsed output specification, ZP.n, is processed

from line (3, 1203) to line (3, 1212). In line (3, 1213) the delimiter

colon, which separates the source input and the input set

specification, is checked.

In lines (3, 1217-1290), the XP input values are read and stored

into the XP[i] linked list of the corresponding component. An XP input

value is read by calling procedure readstr (3, 1218). If the delimiter

between two XP input values is not a comma or a semicolon, then

procedure error(err21) (3, 1220) is called; or if the first character in

the XP input value is a delimiter, then procedure error(errlO) is called.

Procedure new(stringpt) (3, 1223) is called to create a new stringset

(1, 206) to store the XP input value (3, 1225-1226). Depending on the

kind of component, the stringset is inserted into its corresponding

linked list. In the case of a FSM component, the new stringset pointed

to by the pointer stringpt is inserted at the end of the linked list

fsm[tempsm3.XP[xpnum] (3, 1230-1236), where tempsm is the component

enumerated name and xpnum is the current XP number. This process is

repeated until the delimiter after the XP input string is a semicolon

(3, 1290). At the end, in lines (3, 1295-1322) a new stringset with a

null character, is created and inserted into the corresponding XP

input set. In line (3, 1325), procedure readstr is called; if tempstr

equals 'XP', which means another 'XPllne' needed to be processed. The

procedure proxp will go back to line (3, 1175) to process another XP

input. If tempstr does not equal 'XP', the number of the processed XP

inputs are recorded (3, 1328-1335). This ends the procedure proxp.

www.manaraa.com

100

d. Procedure proxs(kind;smtype) (3, 1344): processes the

'XSllne' specification of all the components. The 'XSline*

specification is the same as the 'XPline' specification, except that

the 'XP' in the 'XPline' specification is replaced by 'XS'. In the same

manner, procedure proxs is the same as procedure proxp, except that the

former is used to process 'XP' inputs and the latter is used to process

'XS' inputs.

e. Procedure prozp(kind;smtype) (3, 1502); processes the

'ZPllne' specification of all the components. The local variable kind

(3, 1502) is passed to procedure prozp to identify the kind of component

being processed. In the beginning, the local variable is initialized

to zero to indicate the number of processed ZP outputs.

The repeat loop (3, 1515-1757) processes one ZP output. At first,

the number of the processed ZP output is increased by one; and the ZP

number, zpnum is read (3, 1519-1523). If the ZP number is not in

sequence, then procedure error(errl3) is called. The procedure readstr

(3, 1527) is called to read the character string 'TO' or 'UNCONNECTED'.

Lines (3, 1528-1543) check the character string and the delimiter after

the character string. In line (3, 1547), the local variable is set to

zero to Indicate the number of destinations from this ZP output

(fanout).

The second repeat loop (3, 1549-1628), which resides within the

first repeat loop (3, 1515-1757), reads the destination names and stores

them into the component's data structure. If tempstr does not equal

'UNCONNECTED', then it reads the destination name (3, 1553-1577). In line

www.manaraa.com

101

(3, 1580) the local variable, indicating the number of destinations

is increased by one. The destination component kind;destkind,

name;destname, and pulsed input numberrxpnum are recorded in the data

structure of the processing component (3, 1581-1617). The second level

repeat loop is repeated until the delimiter following the destination

name is not a comma (3, 1618).

Lines (3, 1622-1631) record the number of fanouts for the

particular pulsed output. Procedure prozp then checks if the delimiter

between the destination name and the output set is a colon. If it is a

colon, then procedure error(err20) is called.

The third repeat loop (3, 1638-1717), which also resides within the

first repeat loop, reads the pulsed output set values and stores them

into the component's data structure. The procedure readstr (3, 1639) is

called to read an output string. If the delimiter following the

output string is not a comma or semicolon, then procedure error(err21)

is called; if the output string is a delimiter, then procedure

error(errlO) is called. Procedure new(stringpt) (3, 1649) is called to

create a new stringset to record the output string (3, 1647-1648).

Depending on the kind of the component being processed, the new

stringset is inserted at the end of the corresponding linked list. In

the case of a FSM component, the new stringset pointed to by the

pointer stringpt (3, 1646) is inserted at the end of the linked list

pointed to by the pointer, fsm[tempsm].zp[zpnum] (3, 1652-1658), where

tempsm is the component enumerated name and zpnum is the current ZP

number. This repeat loop (3, 1638^-1717) is repeated until the delimiter

www.manaraa.com

102

after the ZP output string is a semicolon (3, 1717). At the end, in

lines (3, 1721-1752) a new stringset with a null character, is

created and inserted into the corresponding ZP output set. In line (3,

1756), procedure readstr is called; if tempstr equals 'ZP', which means

another 'Zline' needs to be processed, the first repeat loop (3, 1515-1757)

is repeated. If tempstr does not equal 'ZP', the number of the processed

ZP outputs is recorded (3, 1760-1768). This ends the procedure prozp.

f. Procedure prozs(kind;smtype) (3, 1778); processes the

'ZSline' specification of all the components. The 'ZSline'

specification is the same as the 'ZPline' specification, except that the

ZP in the 'ZPline' specification is replaced by 'ZS'. In the same

manner, procedure prozs is the same as procedure prozp, except that the

former is used to process 'ZP' inputs and the latter is used to process

the 'ZS' inputs.

g. Procedure profns (3, 2301); processes the next state

function (FNS) specification of the FSM component. Procedure profns

first checks if the delimiter following the string 'FNS' is a colon. If

the delimiter is not a colon, then procedure error(err20) (3, 2312) is

called. Procedure readstr (3, 2315) is called to read the type of FNS

specification. If tempstr equals 'list', then the FNS list specification

will be processed (3, 2319); else, if tempstr equals 'procedure', then the

FNS procedure specification will be processed; otherwise, procedure

error(err50) is called (3, 2448).

Lines (3, 2319-2439) processes the FNS list specification. The

type of FNS specification is first recorded (3, 2324). Procedure

www.manaraa.com

103

readstr (3, 2326) is called to read the string for the current state.

Procedure profns then starts with the repeat loop (3, 2329-2439) to

process a FNS transition. Whether the string for the current state is an

element of the FSM component state set is checked by calling the

procedure ckvalidset(fsm[tempsm].S,tempstr) (3, 2331). If tempstr is

not an element and does not equal don't care, then procedure

error(err65) is called to create a record element to record the string

for the current state (3, 2335-2337). Procedure profns then checks if

the delimiter following the current state value is a slash, '/'. If

the delimiter is not a slash, then procedure error(errl9) (3, 2340) is

called.

Line (3, 2343) checks if there is any pulsed input string to be

read. If there is, the loop (3, 2348-2358) will read in the string for

the pulsed inputs and store them in the array, fnspf^.xpfi] (3, 2355).

The loop is repeated until the delimiter after the pulsed input string

is not a comma (3, 2358). If the number of pulsed input strings read

does not equal the number of pulsed inputs specified for the component

instance, then procedure error(errl5) is called.

Line (3, 2363) checks if there is any static input string to be

read. If it is true, the loop (3, 2371-2379) will read in the string

for the static inputs and store them in the array, fnsptA.xs[i] (3,

3275). The loop is repeated until the delimiter after the static input

string is not a comma (3, 2379). If the number of static input strings

read does not equal the number of static inputs specified for the

component instance, then procedure error (errl5) is called.

www.manaraa.com

104

Procedure rdlmply (3, 2385) is called to read the special character

string, If tempstr does not equal '=•>', then procedure

error(errl6) (3, 2388) is called. Procedure readstr (3, 2392) is called

to read the next state string. Lines (3, 2401-2417) check if the next

state string is a string constant or used as a local input or output

variable to identify the string by calling the procedure

ckst(st,tempsym,num) (3, 2404). If the next state string is a string

constant, the string constant is stored in the variable,

fnsptA.nexts.sval (3, 2411). If the next state string is a local input

or output variable, the kind of local input or output (cxp, cxs, czp,

czs) is stored in the variable, fnspt^.nexts.id and the input or output

number is stored in the variable, fnsptA.nexts.num. At the end, the

record for the FNS transition pointed to by the pointer, fnspt, is

inserted into the FSM component's FNS entry linked list, which is

pointed to by the pointer, fsm[tempsm].fnsfirst (3, 2421-2429).

Procedure readstr (3, 2435) is called to read another string. If

tempstr does not equal 'END', then the loop (3, 2329-2439) is repeated to

process another transition; otherwise, the list specification is done.

Lines (3, 2443-2448) process the FNS procedure specification.

Since the procedure had been extracted and transformed during the

Transformation process; all the procedure profns has to do in the Data

Input process is to record the type of the FNS specification (3, 2445)

and the procedure number for the FSM component kind (3, 2447), which is

equal to the case index. This procedure will be referenced by the SAS.

The procedure skipproc is called to skip to the end of the procedure (3,

www.manaraa.com

105

2447). Procedure readstr (3, 2451) is called to read another string for

the next line of the specification.

h. Procedure profsmfoutp (3, 2134); processes the pulsed

output function (FOUTP) specification of the FSM component. The FOUTP

specification also has either the list or procedure type. The format

for the procedure type is the same as the FNS procedure. The format for

the list type is similar to FNS list, except that in each transition

line the FNS has only one character string for the next state value

while the FOUTP may have multiple character strings for the next pulsed

output values. The implementation of procedure profsmfoutp is similar

to the procedure profns except for the above difference. Readers can

refer to the explanation of procedure profns to understand the

implementation of procedure profsmfoutp (3, 2134-2289).

i. Procedure profsmfouts (3, 2013); processes the static

output function (FOUTS) specification of the FSM component. The format

in specifying the FOUTS is similar to FNS and FOUTP. The details can be

referred to in Chapter II.B. The approach to implement procedure

profsmfouts is similar to the implementation of procedure profns.

Readers can refer to the explanation of procedure profns to understand

the implementation of procedure profsmfouts (3, 2013-2122).

2. Procedure subcfp and subcfs

Procedure subcfp (3, 2847) governs the sequence of processing the

CFP component specification. Procedure subcfp starts out by calling

procedure prosm (3, 2855) to process the first line of the CFP

www.manaraa.com

106

specification. If the next character string is 'XP', then procedure

proxp(cfpsym) (3, 2858) is called to process all the 'XPllne' of the CFP

component specification; else, procedure error(err3) is called.

Since the CFP specification has the option not to define any static

input, the next line may be a XS or ZS line. If tempstr equals 'XS*,

then procedure proxs(cfpsym) (3, 2863) is called to process all the

'XSline'. If tempstr equals 'ZP', then procedure prozp(cfpsym) (3, 2866)

is called to process all the 'ZPline*.

After processing all the input and output specifications, procedure

subcfp starts to process the pulsed output function. If tempstr equals

'FOUTP*, then procedure procfpfoutp (3, 2871) is called to process the

FOUTP specification, else procedure error(err6) is called. The

details of the implementation of procedure procfpfoutp in lines (3,

2603-2758), are similar to the implementation of procedure profsmfoutp

(3, 2134-2289). At the end, procedure subcfp expects the specification

of the default execution time. If tempstr equals 'deftexec', then

procedure prodeft(r) (3, 2876) is called to read the default execution

time, otherwise procedure error(errAO) is called. The default execution

time is assigned to the variable, cfp[tempsm].texec (3, 2879).

Procedure subcfp then expects an 'END' followed by a semicolon. If

tempstr equals 'END' and the delimiter is a semicolon, procedure subcfp

finishes processing a CFP component; else, procedure error(err7) (3,

2883) is called.

Procedure subcfs (3, 2901) governs the sequence of processing the

CFS component specification. The implementation details of procedure

www.manaraa.com

107

subcf8 are similar to procedure subcfp, which had been explained in the

above paragraphs.

3. Procedure subdelp and subdels

Procedure subdelp (3, 2955) governs the sequence of processing the

DELP component specification. Procedure subdelp starts out by calling

procedure prosm(delpsym) (3, 2963) to process the first line of the DELP

specification. Procedure subdelp then processes the XP input. If

tempstr equals 'XP', then procedure proxp(delpsym) (3, 2966) is called to

process the 'XPline' of the DELP component specification; else,

procedure error(err3) is called. The next step is to process the

'ZPline'. If tempstr equals 'ZP', then procedure prozp(delsvm) (3,

2972) is called to process the 'ZPline' of the DELP component

specification, else procedure error(err4) is called. Procedure

subdelp starts to record the default delay time by calling procedure

prodeft; else, procedure error(err41) is called. The default delay

time is saved in the variable, delp[tempsm].tdel. Procedure readstr is

called to read another character string. If tempstr does not equal

'END' or the delimiter following the string is not a semicolon, then

procedure error(err7) is called to report an error, else, procedure

subdelp finishes processing a DELP component.

Procedure subdels (3, 3000) governs the sequence of processing the

DELS component specification. The DELS specification is similar to the

DELP specification except that XP and ZP in the DELP specification are

www.manaraa.com

108

replaced by XS and ZS. The implementation of procedure subdels is also

similar to the implementation of procedure subdelp.

4. Procedure subque

Procedure subque (3, 3050) governs the sequence of processing the

QUE component specification. Procedure subque starts out by calling

procedure prosm(quesym) (3, 3058) to process the first line of the QUE

specification. Procedure subque then processes the XP inputs. If

tempstr equals 'XP', then procedure proxp(quesym) (3, 3061) is called to

process the 'XPline' of the QUE component specification; otherwise,

procedure error(err3) (3, 3062) is called. The next step is to process

the 'ZPline'. If tempstr equals 'ZP', then procedure prozp(quesym) (3,

3067) is called to process the 'ZPline*; else, procedure error(err4)

(3, 3068) is called. After processing ZP, procedure subque expects a

'ZSline'. If tempstr equals 'ZS', then procedure prozs(quesym) (3,

3074) is called to process the 'ZSline'; else, procedure error(err4)

(3, 3075) is called.

Procedure subque sets the initial state, size, queue pointer and

static output of the queue (3, 3079-3082). Procedure subque continues

to process the default enqueue and dequeue time. If tempstr equals

'deftenq', then procedure prodeft(r) is called to read the default

enqueue time; else, procedure error(err42) is called. The default

enqueue time is assigned to the variable que[tempsm].tenq (3, 3088).

Procedure readstr (3, 3090) is called to read the string 'deftdeq'. If

tempstr equals 'deftdeq', then procedure prodeft(r) is called to read the

www.manaraa.com

109

default dequeue time; else, procedure error(err43) (3, 3092) is

called. The default dequeue time is assigned to the variable

que [tempsm] .tdeq (3, 3098). Procedure readstr is called to read the

string 'END'. If tempstr does not equal 'END' or the delimiter

following 'END' is not a semicolon, then procedure error(err7) is

called; otherwise procedure subque is finished.

5. Procedure subclk

Procedure subclk (3, 3115) governs the sequences of processing the

CLK component specification. Procedure subclk starts out by calling

procedure prosm(clksym) (3, 3123) to process the first line of the CLK

specification. Procedure subclk then processes the XP input. If

tempstr equals 'XP', then procedure proxp(clksym) (3, 3126) is called to

process the 'XPline'j else, procedure error(err3) (3, 3127) is

called. The next step is to process the 'ZPline'. If tempstr equals

'ZP', then procedure prozp(clksym) (3, 3132) is called to process the

'ZPline'; otherwise, procedure error(err4) (3, 3133) is called. After

processing ZP, procedure subclk expects a 'ZSline'; else, procedure

error(err4) (3, 3138) is called.

Procedure subclk sets the initial state and static output of the

CLK component (3, 3142-3143). Procedure subclk continues to process the

default clock period. If tempstr equals 'deftclk', then procedure

prodeft(r) is called to read the default clock period; else,

procedure error(err44) (3, 3146) is called. The default clock period is

assigned to the variable elk[tempsm].tclk (3, 3148). Procedure readstr

www.manaraa.com

110

is called to read the string 'END'. If tempstr does not equal 'END' or

the delimiter following 'END' is not a semicolon, then procedure

error(err7) is called; else, procedure subclk is finished.

6. Procedure subder

Procedure subder (3, 3167) governs the sequence of processing the

DER component specification. Procedure subder starts out by calling

procedure prosm(dersym) (3, 3174) to process the first line of the DER

specification. Procedure subder then processes the XS input. If

tempstr equals 'XS', then procedure proxs(dersym) (3, 3177) is called to

process the 'XSline'; else, procedure error(err3) (3, 3178) is

called. The next step is to process the 'ZPline'. If tempstr equals

'ZP', then procedure prozp(dersym) (3, 3183) is called to process the

'ZPline'; else, procedure error(err4) (3, 3184) is called. At the

end, procedure subder checks for the string 'END' following with a

semicolon. If tempstr does not equal 'END' or the delimiter following

'END' is not a semicolon, then procedure error(err7) is called to report

error; else, procedure subder is finished.

7. Procedure subenv

Procedure subenv (3, 3204) governs the sequence of processing the

ENV component specification. Procedure subenv starts out by calling

procedure prosm(envsym) (3, 3214) to process the first line of the ENV

specification. Since the specification of the Inputs and outputs are

optional in an ENV component, the next line may be an XP, XS, ZP or ZS

www.manaraa.com

Ill

line. First, it checks if tempstr equals 'XP'; then procedure

proxp(envsym) (3, 3217) is called to process all the 'XPline'. Second,

it checks if tempstr equals 'XS'; then procedure proxsÇenvsym) (3, 3218)

is called to process all the 'XSline'. Third, it checks if tempstr

equals 'ZP'; then procedure prozp(env8ym) (3, 3220) is called to process

all the 'ZPline'. Fourth, it checks if tempstr equals 'ZS'; then

procedure prozs(envsym) is called to process all the 'ZSline'.

After processing all the input and output specifications, procedure

subenv starts to process the ENV function. If tempstr equals 'FUNCTION*

(3, 3224), then it processes the ENV function specification (3, 3226-

3246); else, procedure error(err36) (3, 3247) is called. To process

the ENV function specification, procedure readstr (3, 3229) is called to

read the type of ENV function. If tempstr equals 'terminal', then the

type of ENV function is recorded in the variable env[tempsm].fune (3,

3222); else, if tempstr equals 'procedure', then the ENV function variable

is recorded as procedure type (3, 3240); the number of ENV procedure is

increased by one; and the procedure specification is skipped by calling

procedure skipproc; otherwise, procedure error(err51) (3, 3243-3244) is

called.

Procedure readstr (3, 3250) is called to read another character

string. If the component has static outputs (3, 3252), then the

character string should be 'defzsinit'. If tempstr equals 'defzsinit',

then procedure prodefzs(envsym.tempsm) (3, 3255) is called to read in

the default static output values; else, procedure error(err45) is

called. Procedure subenv continues by reading in the default execution

www.manaraa.com

112

time. If tempstr equals 'deftexec', then procedure prodeft(r) (3, 3261)

is called to read the default execution time; else, procedure

error(err40) is called. The default execution time is assigned to the

variable env[tempsm].texec (3, 3265). Procedure readstr (3, 3267) is

called to read another character string. If tempstr equals

'mulpulsecheck', then procedure readstr (3, 3273) is called again to

read another string. If tempstr equals 'false*, then the variable

env[tempsm].mulpulsecheck is set to false else the variable is set to

true (3, 3274-3277). If tempstr does not equal 'mulpulsecheck', then by

default the variale env[tempsm].mulpulsecheck is set to false (3, 3272).

Procedure subenv starts to process the start expression, STARTEXP,

specification. If tempstr equals 'STARTEXP', then procedure skipexp (3,

3285) is called to skip to the end of the expression (since the

expression had been transformed in the Transformation process); otherwise

procedure error(err37) is called. The number of the ENV start

expression is increased by one, and stored in the variable

env[tempsm].envexpno (3, 3289-3290). Procedure readstr (3, 3293) is

called to read the string 'STATREXPCHECK'. If tempstr equals

'STARTEXPCHECK', then procedure readstr (3, 3299) is called again to read

another string. If tempstr equals 'never', then the variable

env[tempsm].checkopt is set to never; else, if tempstr equals

'everyevent', then the variable is set to everyevent; else, if tempstr

equals 'everytimechange', then the variable is set to everytimechange,

else procedure error(err39) is called (3, 3300-3303). If tempstr does

not equal 'STARTEXPCHECK', then procedure error(err38) (3, 3305) is

www.manaraa.com

113

called. Procedure readstr (3, 3306) is called to read 'END'. If

tempstr does not equal 'END', or the delimiter following 'END' is not a

semicolon, then procedure error(err7) (3, 3308) is called. At the end

all the pulsed outputs of the ENV component are set to null,

8. Procedure provarhlst, provarreg and provarcon

Procedure provarhist (4, 1006) processes the variable history

(VARHISTORY) specification. It checks if the VARHISTORY is of type

regular or conditional, then procedure provarreg or provarcon,

respectively, is called to process the specification. Procedure

provarhist starts out to check if there is a blank character after the

string 'VARHISTORY'. If it is not a blank character, then procedure

error(err24) (4, 1015) is called. Procedure readstr (4, 1019) is called

to read the variable history instance name. The instance name is

temporarily saved in the local variable histname (4, 1022). Procedure

provarhist then checks for a colon after the instance name (4, 1025).

Procedure readstr (4, 1029) is called again to read another string. If

tempstr equals 'regular', then procedure provarreg(histname) is called to

process the regular variable history instance; else, if tempstr equals

'conditional', then procedure provarcon(histname) is called to process

the conditional variable history instance, else procedure error(err53)

(4, 1035) is called.

Procedure provarreg(histname:string) (4, 908) processes the regular

variable history instance specification. Procedure provarreg starts out

to create a new record for the regular variable history instance by

www.manaraa.com

114

calling procedure new(regpt) (4, 915). The record is pointed to by

pointer regpt. The details on the record elements can be seen in the

data structure file (1, 529-538). The instance name is saved in the

element regpt^.hlstname, and the pointer to the next instance record is

set to nil (4, 919-920). The current regular variable history instance

record is added to the end of the regular variable history instance

linked list (4, 926-937). The header of the linked list is pointed to

by the pointer, varhistregpt (4, 924). The local variable temp is set

to point to the current regular variable history instance record (4,

940). The integer, 1^, identifying the number of regular variable

history instances is saved in the element, tempA.num. Procedure

provar(temphist) (4, 946) is called to read in the set of variable names

and create a linked list for the set of variables; procedure

provar(temphist) also returns a linked list pointer, temphist, pointing

to the beginning of the variable linked list. The linked list is saved

by assigning temphist to the current regular variable history instance

record element, tempA.varstat (4, 949).

Procedure readstr (4, 952) is called to read the string 'DHISTORY'.

If tempstr does not equal 'DTHISTORY*, then procedure error(err51) (4,

958) is called. The time interval for 'DTHISTORY' is read by calling

the procedure read(sanfile,r) (4, 962). The time interval is stored in

the element, tempA.dthist (4, 968). Procedure readstr (4, 970) is

called to read the delimiter semicolon. If it is not a semicolon, then

procedure error(err22) is called. Procedure readstr (4, 976) Is called

to read the string 'CHECKOPT'. If tempstr equals 'CHECKOPT', then

www.manaraa.com

115

procedure readstr (4, 982) is called again to read the check option

string. If tempstr equals 'never', then the regular variable history

instance record element, tempA.checkopt, is set to never; else, if

tempstr equals 'everyevent', then tempA.checkopt is set to everyevent;

else, if tempstr equals 'everytimechange', then tempA.checkopt is set to

everytimechange; else procedure error(err39) is called (4, 982-989).

Procedure readstr (4, 794) is called to read 'END'. If tempstr does not

equal 'END' and the delimiter following 'END' is not a semicolon, then

procedure error(err7) is called; else, procedure provarreg is

finished.

Procedure provarcon(histname;string) (4, 822) processes the

conditional variable history instance specifications. Procedure

provarcon starts out by creating a new record for the conditional

variable history Instance by calling procedure new(conpt) (4, 830). The

record is pointed to by pointer conpt. The details on the record

elements can be seen in the data structure file (1, 542-549). The

instance name is saved in the element conpt^.histname and the pointer

to the next instance record is set to nil (4, 833-834). The current

conditional variable history instance record is added to the end of the

conditional variable history instances linked list (4, 838-851). The

header of the linked list is pointed to by the pointer, varhistconpt (4,

838). The local variable temp is set to point to the current

conditional variable history instance record (4, 854). The integer

identifying the number of conditional variable history expressions is

saved in the element, temp^.num (4, 857). Procedure provar(temphist)

www.manaraa.com

116

(4, 860) Is called to read in the set of variable names and create a

linked list for the set of variables; procedure provar(temphist) also

returns a linked list pointer, temphist, pointing to the beginning of

the linked list. The linked list is saved by assigning temphist to the

current conditional variable history instance record element,

tempA.varstat (4, 863).

Procedure readstr (4, 866) is called to read the string

'CONDITION'. If tempstr equals 'CONDITION', then procedure sklpexp is

called to skip to the end of the boolean expression; otherwise procedure

error(err54) is called (3, 872-873). The boolean expression is skipped

because the boolean expression had been transformed by the

Transformation process. Procedure readstr (4, 878) is called to read

the string 'CHECKOPT'. If tempstr equals 'CHECKOPT', then procedure

readstr (4, 884) is called again to read the check option string. If

tempstr equals 'never', then the conditional variable history instance

record element, tempA.checkopt, is set to never; else, if tempstr equals

'everyevent ', then tempA.checkopt is set to everyevent; else, if

tempstr equals 'everytimechange', then tempA.checkopt is set to

everytimechange; else, procedure error(err39) is called (4, 882-891).

Procedure readstr (4, 896) is called to read "END'. If tempstr does not

equal 'END', and the delimiter following 'END' is not a semicolon then

procedure error(err7) is called (4, 897); else, procedure provarcon

is finished.

www.manaraa.com

117

9. Procedure proexphlst

Procedure proexphlst (4, 1046) processes the expression history

(EXPHISTORY) specification. Procedure proexphist starts out to check

if there is a blank character after the string 'EXPHISTORY*. If it is

not a blank character, then procedure error(err24) (4, 1058) is called.

Procedure readstr (4, 1061) is called to read the expression history

instance name. The instance name is temporarily saved in the local

variable histname (4, 1064). Procedure proexphlst then checks for a

colon after the instance name (4, 1067). Procedure readstr (4, 1071) is

called again to read another string. If tempstr equals 'regular', then

the expression history instance specification will be processed (4,

1076-1160); otherwise procedure error(err53) is called to report an

error.

In line (4, 1076), procedure new(exppt) is called to create a new

record for the expression variable history instance. The details on the

record elements can be seen in the data structure file (1, 552-561).

The instance name is saved in the element exppt*».histname; the pointer

to the next instance record is set to nil; and the pointer to the

expression status record, exppt\expstat, is also set to nil (4, 1079-

1081). The current expression history instance record is added to the

end of the expression history instance linked list (4, 1085-1098). The

header of the linked list is pointed to by the pointer, exphistpt (4,

1085). The local variable temp is set to point to the current

expression history instance record (4, 1111). The integer i^ identifying

the number of the expression history instance is saved in the element,

www.manaraa.com

118

temp .num (4, 1104). Procedure readstr (4, 1107) Is called to read the

string 'EXPRESSION'. If tempstr equals 'EXPRESSION', then procedure

sklpexp (4, 1109) is called to skip to the end of the boolean

expression; else, procedure error(err55) is called. The boolean

expression is skipped because it had been transformed by the

Transformation process into a global boolean expression. The remaining

lines of procedure proexphlst process the DTHISTORY and the CHECKOPT

specification, which is the same as that of procedure provarreg (4,

908). Readers can refer to Chapter III.D. 7 to follow the

explanation of procedure provarreg.

10. Procedure proindata

Procedure proindata (5, 745) processes the initialization

specification. In the initialization instance, users are allowed to

initialize the simulation beginning and ending time (tbeg and tend), the

seed value for the random number generator (seed), and to set the

variable, mulpulsecheck, to indicate whether multiple pulses arriving

simultaneously at a component are trapped or not.

The loop (5, 757-822) allows the initialization of the above

variables to appear in any order. The loop is repeated until the string

'END' is encountered. This loop does not detect multiple

initialization of variables, but procedure proindata leaves only the

last initializiation value of the variable.

Procedure readstr (5, 758) is called to read a string. If tempstr

equals 'tbeg', then procedure read(sanfile.lr) is called to read the tbeg

www.manaraa.com

119

value (5, 762-771); else, If tempstr equals 'tend', then procedure

read(sanflie,Ir) is called to read the tend value (5, 777-786); else, if

tempstr equals 'seed', then procedure read(sanfile,i) is called to read

the seed value; else, if tempstr equals 'mulpulsecheck', then the boolean

value is read to assign to the variable, mulpulsecheck (5, 803-814);

else, if tempstr equals 'END', then procedure proindata finishes

processing the initialization instance; else procedure error(err7) is

called.

E. Initialization

The Initialization process initializes the user defined system to

some predefined states, in which the system is ready to be executed in

the SAS environment. The Initialization process Is located in lines

(900-908) in the SAS main program (2, 900-908). There are two kinds of

initialization processes, namely New Initialization and Restart

Initialization. Right after the Data Input process, the user terminal

will display a line to ask if New Initialization or Restart

Initialization is to be invoked (2, 900). If Restart Initialization is

to be invoked, then procedure reset(rsflie) (2, 904) is called to open

the restart initialization file, rsfile, to be read; procedure

reload(rsflle) (2, 905) is called to reload the system status from

rsfile file; and procedure close(rsflie) is called to close the rsfile

file (2, 906). Else, procedure inlload (2, 908) is called to start

the New Initialization process.

www.manaraa.com

120

1. New Initialization process

New Initialization process assumes that all of the system

components are in their default initial states and default initial

static outputs as defined in the SAN system specification. All the

pulsed Inputs and outputs are assigned with a string null,

Basically the New Initialization process does the following:

a) Maps the initial state of all FSM, QUE, and CLK instances into

their corresponding static outputs.

b) Loads all the static outputs of all FSM, CFP, CFS, DELS, QUE,

CLK and ENV instances into their corresponding destination

static Inputs. If the destination instance is a DER, then

sets the current state of the DER instance equal to its

current static input (the current state of a DER instance

always equals the static input of the DER except at the moment

at which a static input transition takes place which is

supposed to be instantaneous).

c) Checks if the current static outputs of all the CFS components

are equal to the FOUTS mapping of their current static in­

puts, and the current static outputs of all the DELS

components equal to their current static inputs. If they are

equal, then the system is initially stable else the system is

initially not stable.

d) Initializes all the regular variable history instance and

expression history instance next data collection times to

tnow.

www.manaraa.com

121

e) Finally, control Is given to the System Executive to start the

system execution.

Procedure iniload (7, 890) implements the New Initialization

process. Procedure iniload starts out to set tnow equal to TINIT, the

beginning time of the initialization period (7, 904). Procedure iniload

then maps the initial state of all the FSM components into their

corresponding static outputs and loads the static outputs into their

destinations. Line (7, 909) checks if the variable fsml, representing

the last FSM component, equals fsmO. If fsml equals fsmO, which means

there is no user defined FSM component, then the FSM component

initialization process is skipped, else the for loop (910-933)

initializes all the FSM components, starting from the first FSM

component fsmf to the last FSM component fsml, as follows;

a) sets the next state value equal to the current state (7, 914),

b) executes the Static Output Function (FOUTS) to map the current

state into current static outputs (7, 915-918).

c) initializes all the pulsed inputs and outputs to null (7, 920-

926),

d) loads all the static outputs into their corresponding

distination inputs (7, 927-931).

In a similar manner, lines (7, 938-952), the initial state, static

output, pulsed inputs and pulsed outputs of all the QUE component are

initialized. Lines (7, 957-970) Initialize the initial state, static

output, pulsed input and pulsed output of all the CLK components. Lines

(7, 974-984) initialize the static outputs of all the CFS components.

www.manaraa.com

122

Lines (7, 988-990) load the static output of all the DELS components

into their destinations. Lines (7, 995-1000) initialize the current

state and the pulsed output of all the DER components. Lines (7, 1004-

1017) initialize the pulsed inputs and outputs of all the CFP components

to null, and load the pulsed outputs into their destination components

and initialize all the pulsed inputs to null. Lines (7, 1021-1026)

initialize the pulsed input and output of all the DELP components to

null. Lines (7, 1032-1044) load the static outputs of all the ENV

components into their destination components and initialize all the

pulsed input to null. Procedure inistab (7, 1046) is called to check if

the system is initially stable or not (the details of procedure inistab

will be explained in the next paragraph). If the system is stable, the

current simulation time (tnow) is set to tbeg. The event file pointer

is set to nil (7, 1052). Procedure rexs (7, 1054) is called to reset

the loading status of all the static inputs, indicating that none of the

static inputs have been changed at the current simulation time.

Procedure restatus (7, 1056) is called to reset all the CPS, DELS, and

DER components execution status to idle, because their execution status

may be set to pend state during the stability test. The SAS defined ENV

components (SYSTEM-MONITOR and envO) are initialized as terminal ENVs

with check option equal never (7, 1059-1065). The next data collection

times of all the regular variable history and expression history

instances are set to tnow (7, 1069-1081). This completes the New

Initialization process.

www.manaraa.com

123

Procedure Inlstab (7, 769) checks if the user defined system is

initially stable or not. SAS expects users to define the initial value

of the system components such that the current static outputs of all the

CPS components are equal to the FOUTS mapping of their current static

inputs and the current static outputs of all the DELS components equal

their current static inputs. Procedure inistab will execute the FOUTS

of all the CFS components to check if there are any discrepancies in the

static outputs of the CFS components. Procedure inlstab also checks if

the current static outputs of all the DELS component equal their current

static inputs. If the system is Initialized according to the above

conditions, there should be no change in the outputs of the CFS components

and the current static outputs of the DELS components should equal their

current static inputs. In this case, the system is said to be stable,

otherwise the system is unstable.

Procedure inistab starts out to assume the system is stable (7,

776). The FOUTS of each CFS component is executed. The next static

output values are compared to the current static output values; if

they are not equal, then the variable stable is set to false and the name

of the unstable component name is recorded (7, 779-795). Procedure

inistab continues to check if the static output of each DELS component

equals its static input. If any of them is not equal, then the local

variable stable is set to false and the unstable component name is

recorded. If the user defined system is stable, then the message 'SYSTEM

IS STABLE' is printed on the terminal else the message 'SYSTEM IS

www.manaraa.com

124

UNSTABLE' is printed on the terminal. These complete the stability

tests.

2. Restart Initialization process

The Restart Initialization process allows users to continue the

execution of the user defined system from the state in which the

previous run stopped. This process requires the final status of the

total simulation system to be saved at the end of the previous

simulation run. The final status of the total simulation system is

stored in the restart file, rsflle, according to the following steps:

a) The cs, cxp, cxs, czp, czs, cxsload, texec, execstatus, and

the update state records of all FSM components are saved. The

update state record contains the nts, ntzp, ntzs and the

update time of the component.

b) The cxp, cxs, czp, cxsload, texec, execstatus, and the updadte

state records of all CFP components are saved.

c) The cxs, czs, cxsload, texec, execstatus and the update-state

record of all CPS components are saved.

d) The cxp, czp, tdel, execstatus and the delay link record of

all DEL? components are saved. The delay link record contains

all the pulsed or transition values which will be loaded into

the pulsed output.

e) The cxs, czs, tdel, execstatus and the delay link record of

all DELS components are saved.

www.manaraa.com

125

f) The cxp, czp, czs, tenq, tdeq, enqstatus, deqstatus and the

queue status of all QUE components are saved. The queue status

contains the state, the size and all the data elements of the

QUE component.

g) The cs, cxp, czp, czs,tclk, execstatus, and the update-state

of all CLK components are saved.

h) The cs, cxs, czp and execstatus of all DER components are

saved.

1) The cxp, cxs, czp, czs, cxsload, texec, execstatus, tstart,

and the update-state record of all ENV components are saved.

j) All the elements of the event file are saved.

k) The last executed component kind, component name,

event type, tnow, tprev, tfin, and mulpulse value are saved.

In order to continue the system execution from the state in which

the previous run stopped, the simulator will start with the Data Input

process to reconfigure the system. Then the simulator gives control to

the Restart initialization process which in effect follows the above

steps to retrieve all the information stored in the restart file,

rsflie. At this point all the system components' status and the

simulator variables have the same value when the system execution was

stopped last time. The simulator then gives control to the System

Executive to start system execution again.

Performance data collected during the last system execution are not

restored. The linked list records for performance data storage are re­

initialized as if no data have been stored. The performance data

www.manaraa.com

126

collection procedure will start to collect data as if the system

execution is started at the beginning.

At the end of a simulation, the simulator asks the user to Indicate

if the final status of the total simulation system is to be saved (2,

917). If the user responsed yes, then procedure savesysvar (rsfile) (2,

923) is called to save the final status of the total simulation system.

Procedure savesysvar(varoutfile;text) (8, 1201) starts out to check

if there is any FSM component in the SAN model. If the last FSM

component, fsml, does not equal fsmO, then procedure ssfsm(outfile,name)

(8, 1209) is called to save the final status of all the FSM components.

The name of the FSM component is passed to procedure ssfsm(outfile,name)

by the variable, name, starting from the first FSM component, fsml, to

the last FSM component denoted by variable, fsml.

Procedure ssfsm(var outfile:text,name:smname) (8, 744) saves the

final status of a FSM component in the output file, outfile. The name

of the FSM component is passed to the procedure ssfsm by the variable

name. Lines (8, 750-756) show that the execute status (execstatus),

the current state (cs), the next state (nts), the current pulsed inputs

(cxpfil), the current static inputs (cxs[i]). the current pulsed outputs

(czpfil), the next pulsed outputs (ntzp[i]), the current static outputs

(czs[i]), the next static outputs (ntzs[i]), the next update time (time)

and next update task (task) of the FSM component, name, are saved in the

file, outfile.

After saving the final status of all the FSM components, procedure

savesysvar continues on to save the final status of all the CFP, CFS,

www.manaraa.com

127

DELP, DELS, DER, CLK, QUE and ENV components in the same manner as the

final status of all the FSM components are saved (8, 1210-1225).

Procedure sssvar(outfile) (8, 1228) is called to save system variables

and the event file.

Procedure 3ssvar(var outflie:text) (8, 920) saves all the system

variables and the event file in the file, outfile. Procedure sssvar

starts out to save the event file first. The local variable, tempset,

is set to point to the header of the event file. The variable

indicating the number of event sets is initialized to zero (8, 929). The

while loop (8, 931-935) finds out the number of event sets in the event

file and the event set number is saved in the file, outfile. The for

loop (8, 938-948) saves all the event file information in the file,

outfile. First, the event set time and event count of an event set is

saved (8, 940). Second, the component kind, component name, and the

event type of an event is saved; this step is repeated until all the

event entries of an event set are saved (8, 942-948). The for loop (8,

938-948) is continued until all the event sets are saved. At the end,

the current simulation time (tnow), the previous simulation time

(tprev), the last executed component kind, component name, and event

type are saved in the file, outfile (8, 951-952).

After saving the event file and the system variables, the next data

collection times of all the performance trace instances are saved by

calling procedure ssstat(outfile) (8, 1231). Procedure 3sstate(var

outfile:text) (8, 1177) basically saves the next data collection times

www.manaraa.com

128

for all the regular variable history instances and expression history

instances. That completes the process of saving the final status of the

total simulation system.

In the initialization process, the simulator asks the user to

Indicate if it is a new initializiatlon or restart initialization (1,

900-908). If it is a restart initialization, then procedure

reset(rsflle) is called to reset the restart Initialization file,

rsflie, for reading; procedure reload(rsflie) is called to read the

restart initialization file, rsflie, to reconfigure the user defined

system from the state in which the previous run stopped; and procedure

close(rsflle) is called to close the restart initialization file.

Procedure reload(var Inflie:text) (8, 1238) basically does the

reverse process of procedure savesysvar(varoutflie.text) (8, 1201) to

read the restart initialization file and reconfigure the user defined

system from the state in which the previous run stopped. At the end,

procedure reload also initializes the two SAS defined ENV components,

S$SYSTEM-MONITOR and envO to terminal ENV with check option equal never.

F. System Executive

System Executive, which is the heart of the State Architecture

Simulator (SAS), carries out the simulated execution of the user's

system. Inside the System Executive, performance traces are saved as

appropriate in a performance data file, system status reports are saved

in a system data file, and user interaction with the model through the

www.manaraa.com

129

execution of terminal environment components is carried out through the

user's terminal. Simulated system execution error reports are also made

to the user via the terminal.

In the following sub-sections, we will first describe the control

flow of the System Executive to give readers a general idea of how the

System Executive performs system execution based on the event file. The

discussion of the control flow of the System Executive will touch

several important ideas such as event file management, scheduling and

execution of start and update events, performance trace collection, and

the time advancement process. The details of the above ideas and their

implementations will be explained after the explanation of the control

flow of the System Executive.

1. Control flow of System Executive

Before we describe how the System Executive performs system

execution based on the event file, we want to describe the general

philosophy of the System Executive. SAS is an event driven simulator.

There is a multi-linked list event file to keep track of all the

events to be executed. There are two types of events, namely start and

update for each component kind, except the DER component which has only

a start event. Each start event of a component is scheduled (put) into

the event file as a result of an input excitation (arrival of a pulsed

input or change of a static input). The update event of a component is

put (scheduled) into the event file at the end of the execution of the

www.manaraa.com

130

component's start event when the component's execution time Is greater

than zero.

There Is a general exception to the above discussion for the ENV

component. Each ENV component has a start expression and a start

expression check option associated with the component. Whenever the

start expression of the ENV component evaluates true at the check option

time (everyevent, everytlmechange, never), a start event of the ENV

component is scheduled into the event file. That is why later on in

the control flow of the System Executive the start expression of each

ENV component is checked both at the end of each event execution and at

the end of the execution of all the events in an event set.

Furthermore, when the start event of an ENV component Is executed, it can

initiate a future start event of the ENV component. To avoid the

confusion of having more than one event of the same ENV component in the

event file for the same time, the future start event of the ENV

component is not scheduled into the event file right away. Rather, the

ENV component variables tstart and updatestate.task are set to indicate

a start event of the ENV component needs to be scheduled at the time

Indicated by tstart. Later on in the control flow of the System

Executive, each ENV component is checked if a start event of the

component needs to be scheduled just before an event is removed to be

executed and after all the events in an event set Is executed.

As for the performance trace instances, the information Indicating

the next recording time of a performance trace is stored In the

performance trace data structure. Later on in the control flow of the

www.manaraa.com

131

System Executive, the performance trace instances are checked if the

performance trace is to be recorded.

The control flow of the System Executive is shown in Figure 3.7 and

is described as follows:

(a) It checks if the current simulation time, tnow, exceeds the

ending of the simulation time, tend; or if the system halt

variable, syshalt, is true. If one of them is true, the

simulator will exit from the System Executive, otherwise it

continues at (b).

(b) If there is any event in the event file, then it continues at

(c); otherwise it goes to (d).

(c) While there is at least one event waiting to be executed at

tnow, it goes to (c.i); otherwise it goes to (d).

i) It first checks if there is any ENV start event to be

scheduled at tnow. If that is true, then an ENV start

event is scheduled at tnow.

11) It removes an event-entry from the event file,

ill) Depending on the type of event (start or update) and the

kind of component, the proper procedure will be executed,

iv) After the execution of every event, the System Executive

will check if any ENV start event needs to be scheduled

at tnow. If yes, a start event for that ENV is scheduled.

www.manaraa.com

132

N) _

a#ck EMV start
expraaalon st

•wry tloa chongt

Qitck ptrforanne*
trace recording

at ewery tin cnange

'

ta on
Mt

'

Mvam
stnulstlon tin

RiHt e»[l|
loading «tatrn

' to falu

Sat all
output*

luUad
to null

c«fp\ mt#

Any
event In ths

ewntflle

Any
event waiting

at tnow

voitlng

MdENV
start evint needtd
' to be scheduled

an
e*nt entry

FSU and

— — e n v u p d a t e

OtackOM
axpraaalo
awry ava
amcutad

atart
1 altar
nt balng

Oaek parforimnea
traca racording

a/tar awry awnt
balng axacutad

•yshalt

Figure 3.7. Control flow of the System Executive

www.manaraa.com

133

v) It also checks if any performance trace needs to be

collected. If yes, the performance trace collection

procedure will be executed.

vi) It checks the system halt variable again. If syshalt

equals true, then the simulator will exit from the System

Executive, otherwise it goes back to (c).

(d) After the execution of all the events in the current event-set

and before the current simulation time is increased, it checks

if any ENV component start event needs to be scheduled. If

yes, a start event of those ENV components will be scheduled

at the current simulation time.

(e) It checks if there is any event waiting to be executed at the

current simulation time, tnow. If yes, then it goes to (a); otherwise it

goes to (e.i).

1) It checks if there is any performance trace to be

collected at every time change. If yes, the performance

trace collection procedures will be executed.

ii) It deletes the event-set, with the current simulation

time, from the event file.

iii) It updates the next simulation time.

iv) It resets the loading status of static inputs of all the

components to false, which implies the static inputs have

not been changed at the current simulation time,

v) It resets the pulsed outputs of all the components to

null.

www.manaraa.com

134

(f) It goes to (a).

When the simulator exits from the System Executive, the simulator

will ask the user if the total status of the simulated system is to be

saved. If yes, the total status of the simulated system is saved in the

restart initialization file, rsfile. The simulator also saves the

performance trace in the performance data file, dataflie, and the system

status data in the system data file, sysflle. This is the end of the

simulation.

2. Procedure Internact

Procedure internact (9, 1033) Implements the control flow of the

System Executive. In the following discussion, we will delay the

explanation of the details of some procedures called by procedure

internact. Procedure internact starts out with a while loop (9, 1053-

1250) to check if the simulation run ends or not (9, 1053). If not,

procedure internact checks If there is any event in the event file (9,

1056). If yes, procedure internact proceeds to execute all the events

in the current event set with the event set time equal to the current

simulation time (9, 1063-1119).

If the current event set time is smaller than the current

simulation time, then procedure execerr(envinstc,l,El) is called (9, 1059).

The parameters envinstc and passed to procedure execerr are not used in

this case; while the integer El^ is the error message number. If syshalt

is set true at the end of the execution of procedure execerr, then

procedure execstop is called to halt the system execution (9, 1049).

www.manaraa.com

135

A second while loop (9, 1063-1119) executes all the events in the

current event set. The while loop check if there is any event in the

current event set (9, 1063). If true, it executes the while loop.

Lines (9, 1066-1089) check all the ENV components if any of their start

events need to be scheduled at tnow. If the ENV component's variables

updatestate.task equals add and tstart equals tnow, which implies a

start event of the ENV component needed to be scheduled at tnow, then

the execution state of the ENV component is checked. If the ENV

component is not in Busy state, then the variables for scheduling an event

are set up and procedure schedule (9, 1080) is called to schedule a

start event for the ENV component. If the ENV component is in Busy

state, then procedure execerr(envinstc,i.E29) is called to report an

execution error (9, 1083).

Procedure remevent (9, 1092) is called to remove an event from the

event file; and the removed event is executed by calling procedure

execevent (9, 1094). The details of procedure remevent and execevent

will be explained in later sections. After executing an event, each ENV

component is examined. If the ENV component is not the last executed

component, and the ENV component's execute state is not idle, and the

ENV component's check option is everyevent, then procedure

checkexp(everyevent) is called to check the start expression (STARTSXP),

as mentioned in Chapter II, of the ENV component (9, 1097-1106). If the

start expression evaluates true, then procedure checkexp(everyevent)

schedules a start event for the ENV component. Procedure

savehi8treg(everyevent). savehistcon(everyevent), and

www.manaraa.com

136

saveexphlst(everyevent) are called to check if there is any regular

variable history, conditional variable history, and expression history,

respectively, to be collected; the history traces will be recorded by

those three procedures If they are needed. These complete one cycle of

the while loop (9, 1063-1119) to execute an event from the current event

set.

At the end of the execution of all the events in the current event

set and before updating the current simulation time, lines (9, 1124-

1152) check if any ENV component start event needs to be scheduled. If

yes, a start event of the ENV component Is scheduled at tnow.

Lines (9, 1154-1156) check if there is any event waiting to be

executed at the current simulation time (some ENV start events may be

scheduled just before the current simulation time is updated in lines

(9, 1124-1152). If yes, procedure Internact skips all the lines (9, 1159-

1248) and goes back to beginning of the while loop (9, 1053); else,

lines (9, 1159-1248) are executed. Procedure

savehistreg(everytlmechange), savehistcon(everytimechange), and

saveexphist(everytimechange) (9, 1161-1165) are called to record

performance traces at every time change. If the current event set does

not have any event, then the current event set is deleted from the event

file (9, 1170-1171). Lines (9, 1174-1175) set the next event time; if

the event file is empty, then it sets the next event time greater than

the ending of the simulation time to indicate no event needs to be

executed until the end of the simulation time. Line (9, 1178) calls

www.manaraa.com

137

function minitsave to obtain the nearest time that a performance trace

Is to be recorded and assigns It to the variable ntsave. Line (9, 1181)

calls function mlnlenvtstart to obtain the nearest time that an ENV

component start event had been Indicated to be scheduled, and assigns It to

the variable ntstart. The current simulation time, tnow. Is saved In the

variable, tprev (9, 1185). Function mlnl(ntsave,ntevent,ntstart) Is

called to pick up the minimum of those three variables and assigns It to

tnow, the current simulation time (9, 1186). If the current simulation

time, tnow, has been advanced, then the loading status, cxsloadfl], of

the static Inputs of all the components are reset to false; the pulsed

outputs, czp[i], of all the components are set to null (9, 1191-1244).

Procedure Internact completes the execution of all the events in an

event set and goes back to the beginning of the while loop (9, 1053) to

start another event set. The while loop is repeated until the current

simulation time exceeds the ending of the simulation time or the system

halt variable is set to true.

3. Event file management

In the following paragraphs, we will discuss the general

organization of the event file, the steps Involved in putting a new

event in the event file (schedule an event) and the steps involved in

removing an event from the event file.

The event file keeps track of all the current and future events

needing to be executed. There are two types of events, start and

update. The details of start and update events will be explained in

www.manaraa.com

138

later sections. All these events, with their attributes which Include

the component kind, the component name, the type of event, and the

execution time of the event, are stored in the event file. The event

file is organized in a multi-linked list structure as shown in Figure

3.8. The multi-linked list groups all the events with the same

execution time into one event set. Each event set has a record of

elements which consists of the following;

a) time - the execution time of the event set

b) count - the total number of event entries in the event set

c) nextevent - a pointer to the first event entry of the event

set

d) next - a pointer to the next event set

Each event entry, within an event set, also has a record of

elements which consists of the following;

a) kind - the kind of the component

b) name - the name of the component

c) action - the type of event (start or update)

d) next - a pointer to the next event entry within the event

set

Event sets are organized in chronological order. The event set

with the lowest execution time is stored on the top of the list. Within

an event set, the event entries with ENV kind are stored on the top of

the list, and the event entries with other kinds are stored below the

ENV kind. The ENV events are given higher execution priority within an

event set because we want the user acting through the terminal ENVs to

www.manaraa.com

139

time count next nextevent

kind next action name

kind next action name

nextevent time count next

X

kind name action next

kind name action next

time count next nextevent

X.

kind nana action next

Figure 3.8. Event file structure

www.manaraa.com

140

have first chance to examine the system status. When a new

event is to be scheduled in the event file, the new event will be

inserted into the event file according to the above order.

The exact order in which an event entry is removed from the event

file is as follows:

a) Those event entries in the event set with the lowest execution

time (earliest event time) will be removed first.

b) Within an event set, event entries with ENV kind will be

removed first.

c) Within the set of event entries with ENV kind, or within the

rest of the event entries in an event set, an event entry is

randomly removed.

Here, we show an example on the priority of removing an event from

the event file. Suppose the event file has four event entries to be

executed at simulation time = 5.0 and one event entry to be executed at

simulation time = 6.0 as shown in Figure 3.9a. If one event is to be

removed from the event file, according to the priority established, the

update event with ENV kind is removed first and the resulting event file

is shown in Figure 3.9b. If another event is to be removed at this

point, one of those three events with execution time = 5.0 is to be

picked randomly. The resulting event file may look like one of the

figures as shown in Figure 3.9c(l), Figure 3.9c(2), or Figure 3.9c(3);

if the event with component name Sendmgr, Medium, or Sendbit,

respectively, is removed.

www.manaraa.com

141

Sonduser update ENV

FSM Sendmgr start

DELS Medium start

Sendbit update

6.0

FSM Sendclk start

Figure 3.9a. Current event file at time =• 5.0

5.0

Sendmgr start FSM

start Medium DELS

FSM Sendbit update

Sendclk FSM start

Figure 3.9b. One event is removed from event file in Figure 3.9a

www.manaraa.com

142

DELS Medium start

Spndblt update FSM

6.0

FSM Sendclk start

C I)

FSM Sendmgr start

FSM Sendblt update

Sendclk FSM start

(21

FSM Sendmgr start

uT
DELS Medium start

6.0

Sendclk start FSM

(3)

Figure 3.9c. (1), (2) and (3) show the three possible results after one

event Is removed from the event file in Figure 3.9b

www.manaraa.com

143

4. Procedure schedule and remevent

Procedure schedule (11, 750) Implements the process of putting a

new event (scheduling an event) into the event file. Just before the

procedure schedule is called, the global variables identifying the

attributes of an event (component kind, component name, event time,

event type) have to be set, e.g. lines (, 1076-1080), so that

procedure schedule knows the type of event and its attributes needing to

be put into the event file. Procedure schedule starts out to assign the

header of the event file to the local variable, curl (11, 758). If the

event file is not empty (11, 759), then the event set list is searched

until the event set time is greater than or equal to the event time of

the new event (indicated by the variable file^time or the end of the

event set list is reached (11, 767-771). If one of the event set times

matches the file_time, then the event set count is increased by one,

which means a new event is to be added into the event set (11, 773),

else a new event set has to be created (11, 777-780) for the new event

and Inserted into the event file (11, 781-794). In line (11, 759), if

the event file is empty, then a new event set is created and the event

file pointer, eventfilept, is initialized to point to the event set (11,

800-806).

At this point, the variable, curl, is pointing at the event set in

which the new event is to be Inserted. The variable, overlap, is set to

indicate if there is overlap of the same event in the same event set.

The while loop (11, 615-821) checks if there is any identical event

already in the same event set. If there is an identical event, then the

www.manaraa.com

144

event count of the event set is decreased by one (11, 823), else a

new event entry is created (11, 827-832) and inserted into the event entry

list of the event set (11, 838-869). If the event entry list is empty,

then the new event entry is inserted at the top of the list (11, 837-843);

else, if the first event entry of the event entry list is not an ENV

component, then the new event entry is inserted to the top of the list (11,

845-849); else, the new event entry is inserted after all the ENV event

entries in the event entry list (11, 858-869). At the end, the scheduled

event and its attributes are printed on the user terminal (11, 870-873).

This completes the scheduling process.

Procedure remevent (9, 809) implements the process of removing an

event from the event file. After executing this procedure, the current

removed event and its attributes: component kind, component name, and

event type, are stored in the global variables: csmkind, csmname, and

csmevent, respectively. Procedure remevent starts out to check if the

event file is empty or not. If the event file is empty, then procedure

execerr(name,num,E19) (9, 817) is called; else, the proper event is

to be removed from the event file (9, 822-860). Function envno is

called to find the number of ENV event entries in the current event set

and assigned to the local variable (9, 822). If there is at least one

ENV event entry, then the function randint(i) is called to randomly pick

a value between 1 and i to indicate which ENV event entry is to be

removed (9, 825); else, function randint(eventfilept<^.count) is

called to randomly pick a value between 1 and eventfilept^count to

indicate which event entry is to be removed (9, 826). If the returned

www.manaraa.com

145

integer variable, n, is 1, the first event entry is to be removed; 2

implies the second event entry is to be removed, and so on. If n equals

0, which it should not, then procedure execerr(name,num,El9) is called

to report an error (9, 827); otherwise, procedure remevent goes down the

event entry list sequentially to pick out the nth event (9, 834-841).

The global variables corresponding to the current removed event are

loaded. A description of the removed event is printed on the terminal

(9, 848-852). The event entry is removed from the event set (9, 855-

856), event set pointers are adjusted, and the event count of the current

event set is decreased by one (9, 859). This completes the process of

removing an event from the event file.

5. Execution of SAN components

SAS is an event driven simulator. There are two types of events,

start and update. Also there are three execution states related to

events; Idle, Pending (Pend), and Busy. In the SAS program, we will use

lower case for the three execution states idle, pend, and busy. In the

following sub-sections, we will explain the meaning of the execution

states; how each component changes its execution state with respect to

its input excitations, execution of start and update events, start and

update event scheduling, and the detailed steps involved in executing

start and update events.

a. Finite State Machine (FSM); exists in three different

execution states as shown in Figure 3.10. When a FSM component is in the

Idle execution state, it is understood that the component has no defined

www.manaraa.com

146

Input excitation Idle Pend

Busy

Figure 3.10. Execution state transition diagram for FSM, CFP and CFS

www.manaraa.com

147

pulsed inputs or outputs; the current state and the static outputs of

the component are defined. At the arrival of a pulsed input, the

execution state of the component is set to Pending and a start event for

the component is scheduled in the event file. The reason for the

Pending state is to allow SAS, a sequential procedure, to emulate the

simultaneous execution of multiple components at the same simulation

time. The Pending state identifies that a pulsed input has arrived at

the FSM component and the component is waiting to be executed at the

current simulation time. When executing the start event of a Pending

FSM, the execution state is set to Busy. If the component execution

time is greater than zero, then an update event for the component is

scheduled, else the update event of the component Is executed

immediately. When executing the update event of a busy component, the

execution state is set to Idle again. This completes the execution

cycle of a FSM component.

The detailed steps in executing a start event of a FSM component

are as follows:

i) The execution state of the component is set to Busy.

ii) The Next State Function (FNS) of the component is

executed.

iii) The Pulsed Output Function (FOUTP) of the component

is executed.

iv) The Static Output Function (FOUTS) of the component

is executed using the new next state.

www.manaraa.com

148

v) The update record, which stores the next state, next

pulsed and static outputs, and the update time, of

the component Is loaded.

vl) If the component execution time Is greater than zero,

then an update event of the component Is scheduled,

else the update event of the component Is executed

Immediately.

The detailed steps In executing an update event of a FSM component

are as follows:

1) The execution state of the component Is set to Idle

11) The pulsed Inputs of the component are reset to null

111) Update the current state of the component from the update

record

Iv) Update the pulsed and static outputs of the component from the

update record

v) The updated pulsed and static outputs are loaded Into their

destination components

b. Pulsed Combinational Function (CFP); also exists In three

different execution states as shown in Figure 3.10. The changes of the

execution state with respect to its input excitation, and the execution

of its start and update events Is similar to that of a FSM.

The detailed steps in executing a start event of a CFP component

are as follows:

1) Set the execution state to Busy

11) Execute the Pulsed Output Function

www.manaraa.com

149

ill) Store the update time in the update record.

Iv) If the component execution time is greater than zero, then an

update event of the component is scheduled, else the update

event of the component is executed immediately.

The detailed steps In executing an update event of a GFP component

as follows:

1) Set the execution state to Idle.

11) Reset the pulsed inputs to null.

ill) Update the pulsed outputs and load the updated

pulsed outputs Into their destination components.

c. Static Combinational Function (CFS); also exists in three

different execution states as shown in Figure 3.10. The changes of the

execution state with respect to its input excitation and the execution

of its start and update event are similar to that of a FSM, except that

the input excitation of a CFS component is due to a change of static

Inputs while that of a FSM component is due to the arrival of pulses at

the pulsed Inputs.

The detailed steps in executing a start and update event of a CFS

component are similar to that of a CFP component, except that the former

executes the Pulsed Output Function of the component and the latter

executes the Static Output Function of the Component.

d. Pulsed Delay (DELP); exists in only two different execution

states as shown in Figure 3.11. At the arrival of a pulsed Input, the

execution state of the component is set to Pend and a start event of the

www.manaraa.com

150

Input excitation

Pend Idle

Execute start event

Figure 3.11. Execution state transition diagram for DELP, DELS, CLK and
DER

www.manaraa.com

151

component is scheduled into the event file. After executing the start

event of the DELP component, the execution state of the component is set

to Idle and an update event of the component is scheduled into the event

file.

The detailed steps in executing a start event of a DELP component

are as follows:

i) Set the update time, which is equal to the current

simulation time + the delay time

ii) Store the pulse in the update record

iii) Schedule an update event of the component at the update time

v) Set the execution state to Idle

The detailed steps in executing an update event of a DELP component

are as follows:

i) Remove the current pulsed output from the update record

ii) Load the pulsed output into its destination components

e. Static Delay (DELS); exists in two different execution

states as shown in Figure 3.11. The changes of the execution state

with respect to its input excitation and the execution of its start and

update events are similar to those of a DELP component, except that the

input excitation of a DELP component is due to the arrival of a pulse at

the pulsed input while that of a DELS component is due to a change of

its static input. The detailed steps in executing a start and update

event of a DELS component are also similar to those of a DELP component.

f. Queue (QUE); has more complicated execution state

transitions than the other component kinds as shown in Figure 3.12. The

www.manaraa.com

152

Idle,Idle

data deq

Idle, Pend Pend, Idle

execute
\a start
\event

\for deq

execute
a star^

event/
for en<^

deq data.

Busy, Idle Pend,Pend

execute an
update event

for onq

execute an
update event
for deq

execute
a start/

event lot/
enq/

execute
\ a start
\event for
\ daq

data deq

Busy, Pend Pend,Busy

an update
for deq

an update
for enq

execute
event

execute
event

Figure 3.12. Execution state transition diagram for QUE

www.manaraa.com

153

execution state of a QUE depends both on the enqueue status (the

execution state of loading new data Into the queue) and dequeue status

(the execution state of pulsing out data from the queue). With each

state In Figure 3.12, we associate a status doubleton; the value on the

left represents the enqueue status and that on the right represents the

dequeue status; e.g. when they are both In Idle state, the execution

state of queue Is represented by the state (Idle,Idle). The transitions

of the execution state of a QUE are as follows;

1) At state (Idle,Idle), If a pulsed datum arrives, then It will

get Into state (Pend, Idle) and schedule a start event for the

enqueuelng process; If a deq control Input arrives, then It

will get Into state (Idle, Pend) and schedule a start for the

dequeuelng process. At the arrival of either a pulsed datum

(enqueue) or a deq control Input (dequeue), a start event Is

scheduled only If both the enqueue state and dequeue state are

Idle. The queue may be busy reacting to only one pulsed input

at a time. If either a pulsed datum or a deq control Input

arrives while the queue Is busy reacting to the other pulse,

then the queue will not become busy with the later pulse until

the reaction to the first pulse Is done. If both a pulsed

datum and a deq control Input arrive at the same time, then one

of the pulses Is randomly picked to be executed first, while

the other will have to wait until the end of the reaction to

the first pulse.

www.manaraa.com

154

11) At state (Pend, Idle), If a start event for the enqueuelng

process Is executed, then It will get Into state (Busy, Idle);

If the enqueue execution time Is zero, then the update event of

the enqueuelng process Is executed Immediately, else an update

event of the enqueuelng process Is scheduled. If a deq control

input arrives, then it will get into state (Pend, Pend),

ill) At state (Idle, Pend), if a start event for the dequeuelng

process is executed, then it will get into state (Idle, Busy);

if the dequeue execution time is zero, then the update event of

the dequeuelng process is executed immediately, else an update

event of the enqueuelng process is scheduled. If a pulsed

datum arrives, then It will get into state (Pend, Pend),

iv) At state (Busy, Idle), if an update event for the enqueuelng

process is executed, then it will get into state (Idle, Idle);

if a deq control input arrives, then it will get into state

(Busy, Pend).

v) At state (Idle, Busy), if an update event for the dequeuelng

process is executed, then it will get into state (Idle, Idle);

If a pulsed datum arrives, then It will get into state (Pend,

Busy).

vi) At state (Pend, Pend), if a start event for the enqueuelng

process is executed, then it will get into state (Busy, Pend);

if the enqueue execution time is zero, then the update event of

the enqueuelng process is executed immediately, else an update

event of the enqueuelng process is scheduled.

www.manaraa.com

155

If a start event for the dequeuelng process is executed,

then it will get into state (Pend, Busy); if the dequeue

execution time is zero, then the update event of the dequeueing

process is executed immediately, else an update event of the

dequeueing process is scheduled.

vii) At state (Busy, Fend), if an update event for the enqueueing

process is executed, then it will get into state (Idle, Pend)

and schedule a start event for the dequeueing process.

viii) At state (Pend, Busy), if an update event for the dequeueing

process is executed, then it will get into state (Pend, Idle)

and schedule a start event for the enqueueing process.

The detailed steps in executing a start event of a QUE component are

as follows:

1) If the execution state is (Idle, Pend), then the start event of

the dequeue process is executed; if the execution state is

(Pend, Idle), then the start event of the enqueue process is

executed; else, if the execution state is (Pend, Pend),

then it randomly picks either the start event of the dequeue

process or of the enqueue process to be executed.

ii) If the start event of the enqueueing process is executed, then

it sets the enqueue status to Busy and sets the enqueue

process update time; if the queue is open, then it sets the

next update state to closedempty and the next pulsed

output to the current pulsed data; if the queue is closed, then

it sets the next update state to closednotempty, the next

www.manaraa.com

156

pulsed output to null, and the next update task to add (which

indicates a pulsed datum will be added into the queue at the

update time).

iii) If the start event of the dequeueing process is executed, then

it sets the dequeue status to Busy and sets the dequeue

process update time; if the queue is open or closedempty, then

it sets the next update state to open and the next pulsed

output to null; if the queue is closednotempty, then it sets

the next update task to delete (which indicates that the

oldest stored datum is to be dequeued and pulsed out); if the

number of data entries in the queue is 1, then the next update

state is set to closedempty, else the next update state is set

to closednotempty.

iv) If the next update time equals the current simulation time,

then the update event of the QUE component is executed, else an

update event of the QUE component is scheduled.

The detailed steps in executing an update event of a QUE component

are as follows:

i) Set the current state and static output of the queue.

ii) Load the static output into its destination component.

iii) If it is an enqueue process update, then the current pulsed

output is set according to the update record; if the next

update task is add, then the pulsed data input is inserted into

the queue; the pulsed input is set to null; the enqueue status

is set to Idle; if the dequeue status is in Pend state, then a

www.manaraa.com

157

start event of the queue Is scheduled Into the event file.

iv) If it is a dequeue process update, then a pulsed data is

deleted from the queue and assigned to the current pulsed

output; the current dequeue control input is set to null; the

dequeue status is set to Idle; if the enqueue status is in

Pend state, then a start event of the queue is scheduled into

the event file.

v) Loads the pulsed output into its destination components.

g. Derivative (PER); exists in two different execution states

as shown in Figure 3.11. At the change of the DER component's static

input, the execution state of the component is set to Pend and a start

event of the component is scheduled into the event file. After

executing the start event of the DER component, the execution state of

the component is set to Idle. The DER component reacts to the change of

its static input instantaneously, which means when a rising or falling

edge in the static input is detected, a £ or ̂ pulse is pulsed out at

the same simulation time. Since the DER component always has zero

execution time, the update event for the DER component will not be

needed.

The detailed steps in executing a start event of a DER component are

as follows:

i) If a rising edge is detected, then the pulsed output is set to

jc, else, if a falling edge is detected, then the pulsed output

is set to

ii) The pulsed output is loaded into its destination components.

www.manaraa.com

158

ill) The current state is set equal to the current static Input.

iv) The execution state is set to Idle.

h. Clock (CLK); exists in two different execution states as

shown in Figure 3.11. At the arrival of a start pulse at the CLK

component pulsed input, the execution state of the component is set to

Pend and a start event for the component is scheduled into the event

file. After executing the start event of the CLK component, the

execution state of the component is set to Idle and an update event of

the component is scheduled into the event file.

The detailed steps In executing a start event of a CLK component

are as follows;

1) If the pulsed input is a start pulse and if the clock is in

the running state, then the scheduled update event of the clock

is deleted from the event file; the clock is set to running

state; the time for the timeout is set; and the update state

record is set with nts and ntzs[l] equal 'expired', ntzp[i]

equals 'timeout', and the update time equals the timeout time.

11) If the pulsed input is a reset pulse and if the clock is in

the running state, then the scheduled update event of the clock

is deleted from the event file; the clock is set to the reset

state; and the update state record is set with nts and ntzs[l]

equal 'reset', ntzp[l] equals null, and the update time equals

tnow.

www.manaraa.com

159

ill) If the update time equals tnow, then the update event of the

clock is executed, else an update event of the clock is

scheduled into the event file.

The detailed steps in executing an update event of a GLK component

are as follows;

i) If the ntzp[l] equals 'timeout', then the czp[l] is set to

'timeout' and the current pulsed output is loaded into its

destination components.

ii) If the ntzs[l] does not equal czs[l], then czsfl] is set to

equal to ntzs[l] and the current static output is loaded into

its destination components.

i. Environment (ENV); exists in three different execution

states as shown in Figure 3.13. At Idle state, if a pulsed input

arrives, or the ENV start expression evaluates to true, or a start event

is scheduled at the current simulation time (in executing an ENV start

event, the user may file another start event of the component to be

scheduled at a future time), then the execution state of the component

is set to Pend and a start event of the ENV component is scheduled into

the event file. At Pend state, after executing a start event of the ENV

component, the execution state of the component is set to Busy; if the

component execution time is greater than zero, then an update event of

the component is scheduled, else the update event of the component is

executed immediately. After executing the update event of the

component, the execution state of the component is set to Idle state

again.

www.manaraa.com

160

Input excitation
Idle Pend

Busy

Figure 3.13. Execution state transition program for the ENV component

www.manaraa.com

161

The detailed steps in executing a start event of an ENV component

are as follows:

i) The execution state of the component is set to Busy.

ii) If the ENV function is terminal, then the terminal function

procedure is called, else, if the ENV function is procedure, then

the ENV procedure, envfunction, is called.

iii) Set the update time.

iv) If the update time equals tnow, then the update event of the

component is executed immediately, else an update of the

component is scheduled into the event file.

The detailed steps in executing an update event of an ENV component

are as follows:

1) Set the execution state to Idle.

ii) Clear all the pulsed Inputs to null.

ill) Update the pulsed and static outputs of the component from the

update record.

iv) The updated pulsed and static outputs are loaded into their

destination components.

6. Implementation of the start and the update event of each component kind

This section discusses procedures fsmst, fsmupdate, cfpst,

cfpupdate, cfsst, cfsupdate, delpst, delpupdate, delsst, delsupdate,

quest, queupdate, clkst, clkupdate. envst, envupdate, and derst, which

implement the start and the update event of the FSM, CFP, CPS, DELP, DELS,

www.manaraa.com

162

QUE, CLK, ENV components and the start event of the DER component,

respectively.

a. Procedure fsmst(name;smname) (10, 1153); implements the

start event of the FSM components. The variable name indicates the

particular component for which the start event is to be executed.

Procedure fsmst first checks if the execution state is pend or not (10,

1160). If it is, then the start event is executed (10, 1162-1197), else

procedure execerr(name,num,E2) (10, 1202) is called to report an

execution error by passing the name of the current executing component,

name, and the error message, E2^, and a dummy integer, num.

In executing the start event, procedure fsmst first sets the

execution state to busy (10, 1162). It then starts to execute the FNS,

FOUTP, and FOUTS functions of the component (10, 1164-1172). If the FNS

type is list, then procedure fsmfns(name) is called to match the current

state and input array with the FNS list to produce the next state value;

else, if the FNS type is a procedure, then procedure

fsmfunction(f8m[name].fn8proc) is called to execute the FNS procedure,

which is indexed by the procedure number, fsm[name1fnsproc; else,

procedure execerr(name,num,E28) is called (10, 1165-1169). If the

system halt variable, syshalt, is set true then procedure execstop is

called to stop the simulation execution. FOUTP and FOUTS functions (10,

1172-1182) are implemented similarly to the FNS function. At the end,

the next update time is set (10, 1185). If the next update time equals

tnow, then the FSM update event is executed, else an update event of the

FSM component is scheduled into the event file.

www.manaraa.com

163

Inside procedure fsmst, procedures fsmfns(name), fsmfoutp(name). and

fsmfouts(name) are called to execute the list type specification of the

FNS, FOUTP, and FOUTS functions. As for the procedure type specification

of the FNS, FOUTP, and FOUTS functions, procedure fsmfunction(num) is

called by passing the appropriate procedure number, num, to execute

their functions. Procedure fsmfunction(num;integer) (20, 755) contains

all the FNS, FOUTP, and FOUTS procedures defined in the FSM components.

The variable, num, passed to procedure fsmfunction(num) is used as a

case index to branch to the section of code to execute the appropriate

function.

Procedure fsmfns(name;smname) (10, 933) implements the execution of

the list type specification of the FNS function. Procedure fsmfns

starts out to set temp pointing to the first entry of the FNS list (10,

941). Procedure fsmfns then searches the FNS list until the current

state and input values match with one of the entries in the FNS list or

the end of the FNS list is reached. The while loop (10, 948-980)

performs the searching. Each loop matches one entry of the FNS list to

the current state and input values. Line (10, 950) checks if the

current state value equals the state value in the FNS list entry or if

the state value in the FNS list entry is don't care. If so, the

procedure fsmfns continues on to match the pulsed and static inputs;

otherwise procedure fsmfns advances to the next FNS list entry (10,

979). Lines (10, 953-962) check if the current pulsed inputs match the

pulsed input value in the FNS list entry. If they match, then the local

variable xpok is set to true. If xpok is true, then procedure fsmfns

www.manaraa.com

164

continues on to check If the current static Input values match the

static Input values In the FNS list entry. If they match, then the local

variable xsok Is set to true. If the current state pulsed and static

input values equal those of an FNS list entry, then the local variable

match is set to true. If match is not true, then procedure fsmfns

advances to the next FNS list entry. The while loop (10, 948-980) is

repeated until match is true or the end of the FNS list is reached.

If the current state and input value match one of the FNS list

entries, then the next update state, nts is loaded (10, 985-1000). The

character string denoting the next update state value may be a string

constant or variable. If the character string is a string constant, then

nts is set to equal the character string, temp .nexts.sval (10, 988).

If the character string is a string variable, which may be a local cs,

cxp[l], cxs[i], czp[il or czs[i] variable, then the appropriate value is

assigned to the next update state, nts (10, 991-998).

Procedure fsmfoutp(name;smname) (10, 1012) and procedure

fsmfouts (name;smname) (10, 1098) implement the execution of the list

type specifications of the FOUTP and FOUTS functions. The

implementation details of procedures fsmfoutp and fsmfouts are similar

to that of procedure fsmfns. Readers can refer to the discussion of

procedure fsmfns to understand the procedures fsmfoutp and fsmfouts.

b. Procedure fsmupdate(name;smname) (10, 1216); implements the

update event of the FSM components. The variable name passed to the

procedure fsmupdate indicates the particular component for which the

update event is to be executed. Procedure fsmupdate starts out to check

www.manaraa.com

165

if the execution state is in Busy state or not (10, 1226). If not, then

procedure execerr(name,num,E4) is called to report an execution error.

Procedure fsmupdate continues by checking if the update time equals

tnow (10, 1229). If not, then procedure execerr(name,num,E3) (10, 1274)

is called. Procedure fsmupdate then starts to update the FSM component.

The execution state is first set to Idle. All the pulsed inputs are set

to null. Function ckvalidset(S,update8tate.nts) is called to check if

the next update state value is an element of the state set. If the next

update state value is an element of the state set, then the next update

value is assigned to the current state variable, cs, otherwise procedure

execerr(name,num,E25) is called. Lines (10, 1244-1255) update all the

pulsed outputs. For each of the next update pulsed outputs, if the

output is not null, then it is checked if it is an element of the pulsed

output set by calling procedure ckvalldset(ZP[1].updatestate,ntzp[i]).

If it is not, then procedure execerr(name,num,E26) is called, else

the current pulsed output is updated and procedure

schdestxp(fsmsym,name,l) is called to load the pulse into its

destination components. If the next update pulsed output is null, then

the current pulsed output is set to null.

Lines (10, 1260-1268) update all the static outputs. If each of

the next update static outputs does not equal its current static output,

then the next update static output is checked if it is an element of the

static output set by calling procedure

ckvalidset(ZS [i] «updatestate.ntzs[i]). If it is not, then procedure

execerr(name,num,E27) is called, else the current static output is

www.manaraa.com

166

updated and procedure schdestxs(fsmsym,name,i) is called to load the

static output into its destination components. If the next update static

output equals the current static output, then nothing is done. At the end,

all the next update pulsed outputs are set to null (10, 1271).

Inside procedure fsmupdate, procedures schdestxp(fsmsym,name,i)

and schdestxs(fsmsym,name,i) are called to load the pulsed and static

outputs into their destination components. Procedure

schdestxp(kind;smtype;name;smname;num;integer) (11, 1354) sorts out the

kind of component needing to be processed. It then calls the

appropriate procedure to load the component's pulsed output into its.

destination components (11, 1359-1368). In this case a FSM component's

pulsed output needs to be processed. The procedure fsmdestxp(name,num)

(11, 1360) is called to load each component's pulsed output into its

destination components.

Procedure fsmdestxp(name;smname;num; integer) (11, 1031) finds out

the destination of the pulsed output, fsm[name].czp[num]. It then calls

procedure loadxp to load the pulsed output into its destination.

Procedure fsmdestxp starts out by initializing the fanout number, to

1 (11, 1040). The while loop (11, 1041-1068) first picks out the

destination component kind (dkind), component name (dname), the pulsed

input number (dindex), and the value to be loaded into the destination

component pulsed input (dvalue). If the pulsed output is not connected

anywhere, then procedure fsmdestxp does nothing, else procedure

loadxp(dkind,dname,dindex,dvalue) (11, 1051) is called to load the

pulsed output into its destination components. Procedure fsmdestxp sets

www.manaraa.com

167

up the variables for a start event for each of the destination

components to be scheduled. If the component kind is not a QUE, then

procedure schedule is called to schedule a start event into the event

file; else, for a QUE, if both the enqueue state and the dequeue state

of the queue are idle, then a start event is scheduled, else it does

nothing. (A start event of a QUE is scheduled only if both the enqueue

status and dequeue status are idle as discussed in Chapter III.F.5.f.)

At the end, the fanout number is increased by one. The loop (11, 1041-

1068) is repeated until all the destinations are treated or the fanout

number exceeds the maximum fanout number.

Procedure loadxp(kind;smtype;name;smname;num;Integer;

xpvalue;string) (11, 884) loads a value into the destination pulsed

input. Procedure loadxp starts out by assigning temp pointing to the

string set of the pulsed input set according to the kind of component to

be loaded (II, 893-901). The while loop (II, 909-914) checks if the

value to be loaded is an element of the pulsed input set. If so, the

local variable valid is set to true, else valid is set to false. If

valid, then procedure execerr(name,num,E4) is called to report an

execution error with name indicating the component name, num indicating

the pulsed input, and indicating the error message. If valid is true,

then, depending on the kind of component procedure, loadxp branches off

to the appropriate lines. As an example, if the component kind is a FSM

then lines (II, 921-937) are executed. If the execution state of the

component is idle, then the pulsed input is loaded and the execution

state is set to pend; else if the execution state is pend, multiple

www.manaraa.com

168

pulses option is enabled, and the current pulsed input is null, then the

pulsed input is loaded, if the pulsed input is not null, then procedure

execerr(name,num,E18) is called (11, 931-933). If the execution state

is pend and multiple pulses option is not enabled, then procedure

execerr(name.num,E15) is called. The details of loading the pulsed

inputs of different components are similar. This completes the loading

process of a pulsed output into a pulsed input.

To load a pulsed output from a FSM component into its destination

pulsed input, first procedure schdestxp(kind;smtype;name!smname;num;

Integer) (11, 1354) is called. Procedure schdestxp will call procedure

fsmdestxp(name;smname;num; integer) (11, 1031) to find out the

destination component. Procedure fsmdestxp will call procedure

loadxp(kind;smtype;name;smname;num;integer;xpvalue;string) (11, 884) to

load each pulsed output value into the pulsed input. In the same

manner, to load each static output from a FSM component into its

destination static inputs, first procedure schdestxs(kind:smtype;name:

smname;num;Integer) (11, 1780) is called, which in turn calls procedure

fsmdestxs(name!smname;num;integer) (11, 1504) to find a destination

static input. Procedure fsmdestxs then calls procedure loadxs(kind;

smtype;name;smname;num; integer;xpvalue; string) (11, 1381) to load the

static output value into the static input. The implementation details

of procedures schdestxs, fsmdestxs, and loadxs are similar to those of

procedures schdestxp, fsmdestxp, and loadxp. Readers can refer to the

discussion of procedure schdestxp, fsmdestxp, and loadxp to understand

the implementation of procedure schdestxs, fsmdestxs, and loadxs.

www.manaraa.com

169

c. Procedures cfpst(name;smname) (10, 1368) and cfpupdate(name;

smname) (10, 1416); implement the start and update events of the CFP

component. The Implementation details of procedures cfpst and cfpupdate

are similar to those of procedures fsmst and fsmupdate, except that the

former only has to execute the pulsed output function and load the

pulsed outputs into their destinations, while the latter has to execute

the next state function, pulsed output function, and static output

function and load both the pulsed and static outputs into their

destinations. Readers can refer to the explanation of procedures fsmst

and fsmupdate to understand the implementation of procedures cfpst and

cfpupdate.

d. Procedures cfsst(namc:smname) (10, 1537) and cfsupdate(name;

smname) (10, 1585); implement the start and update events of the CFS

component. The implementation details of procedures cfsst and cfsupdate

are also similar to those of procedures fsmst and fsmupdate, except that

procedures cfsst and cfsupdate only have to execute the static output

function and load the static outputs into their destinations. Readers

can refer to the explanation of procedure fsmst and fsmupdate to

understand the implementation or procedures cfsst and cfsupdate.

e. Procedure delpst(name;smname) (10, 1627): implements the

start event of the DELP component. Procedure delpst starts out by

checking if the execution state is pend. If it is false, then procedure

execerr(name,num,E2) is called; else the next update time is set

(10, 1640), a new record is created to save the next update pulse (10,

1643-1647), the new record is inserted into the DELP component update

www.manaraa.com

170

record by calling procedure lnsdelp(name.temp) (10, 1650), an update

event of the DELP component is scheduled into the event file (10, 1653-

1656), and the execution state is set to idle (10, 1659). This

completes the start event of a DELP component.

f. Procedure delpupdate(name;smname) (10, 1668); implements

the update event of the DELP component. Procedure delpupdate starts out

by checking if the list for the update pulse record is empty or not. If

it is empty, then procedure execerr(name,num,E5) (10, 1696) is called,

else, the first update time is checked. If the update time is not

equal to tnow. then procedure execerr(name.num,E3) (10, 1693) is called,

else the update pulse is checked if it is an element of the pulsed

output set. If it is not, then the procedure execerr(name,num,E26)

(10, 1684) is called; else the current pulsed output is loaded,

procedure schdestxp(delpsym.name,i) is called to load the pulsed output

into its destinations, and the update pulse record is removed from the

list of the update pulse record. This completes the update event of a

DELP component.

g. Procedures delsst(name;smname) (10, 1702) and delsupdate

(name;smname) (10, 1742); implement start and update events of

the DELS component. The implementation details of procedures delsst and

delsupdate are similar to those of procedures delpst and delpupdate

except that the former delay the pulsed input values to appear at the

pulsed output, while the latter delay the static input transitions to

appear at the static output. Readers can refer to the explanation of

www.manaraa.com

171

procedures delpst and delpupdate to understand the implementation of

procedures delsst and delsupdate.

h. Procedure quest(name;smname) (10, 1937); implements the

start event of the QUE component. If the enqueue status is idle and the

dequeue status is pend, then procedure deqst (10, 2016) is called to

execute the start event of the dequeue process; else, if the enqueue

status is pend and the dequeue status is idle, then procedure enqst (10,

2018) is called to execute the start event of the enqueue process; else,

if both the enqueue and dequeue status are pend, then procedure quest

will randomly pick either procedure enqst or procedure deqst (10, 2022-

2024); else procedure execerr(name,num,E6) is called (10, 2027). At the

end, the update time is set; if the update time equals tnow, then

procedure queupdate(name) is executed, else an update event of the QUE

component is scheduled into the event file.

Procedure enqst (10, 1940) implements the start event of the

enqueueing process. The enqueue status is first set to busy. The

enqueue process update time is set (10, 1948). If the queue is open,

then the next update state and static output is set to closedempty and

the next pulsed output is set to the current pulsed data; else the

next update state and static output are set to closednotempty, the next

pulsed output is set to null, and the update task is set to add (which

indicates a pulsed data will be added into the queue at the update time)

(10, 1960-1963).

Procedure deqst (10, 1971) implements the start event of the

dequeue process. The dequeue status is first set to busy. The dequeue

www.manaraa.com

172

process update time is set (10, 1979). If the queue is open or

closedempty, then the next update state and static output are set to

open and the next pulsed output is set to null; else, if the queue

has only one data element, then the next update state and static output

are set to closedempty. else they are set to closednotempty; also, the

next update task is set to delete (which indicates that the oldest

stored data is to be dequeued at the next update time) (10, 1992-2003).

i« Procedure queupdate(name;smname) (10, 2051); implements the

update event of the QUE component. Procedure queupdate starts out by

checking if the update time equals tnow. If not, then procedure

execerr(name,num,l) (10, 2141) is called, else procedure queupdate

proceeds to update the queue. The current state and static output of

the queue is updated (10, 2065-2071). If the enqueue status is busy and

the dequeue status is not busy, then the enqueue process is updated (10,

2077-2094); else, if the dequeue status is busy and the enqueue status is

not busy, then the dequeue process is updated (10, 2100-2120); else

procedure execerr(name,num,E7) is called. At the end, if a pulse is

generated at the pulsed output, then procedure ckvalidset(ZP[l],czp[l])

is called to check if the pulse is an element of the pulsed output set.

If it is not, then procedure execerr(name.num,E26) is called, else

procedure schdestxp(quesym,name,l) is called to load the pulsed output

value into its destination components (10, 2131-2134). The next update

pulsed output is cleared to null (10, 2137). This completes the update

process.

www.manaraa.com

173

j. Procedure derstÇname;smname) (10. 1785); implements the

start event of the DER component. If the execution state is not pend,

then procedure execerr(name,num,E2) is called, else, if the static

input changes from low (1) to high (h^) or from £ to 1^, then the current

pulsed output is set to rising (£) and procedure

schdestxp(dersym,name,l) is called to load the pulsed output into its

destination; else, if the static input changes from high (h) to low (J^)

or from 1^ to 0^, then the current pulsed output is set to falling (^) and

procedure 8chdestxp(dersym,name,l) is called to load the pulsed output

into its destination (10, 1797-1809). The current state is set to the

current static input and the execution state is set to idle (10, 182-

1815). This completes the execution of a DER component.

k. Procedure clkst(name;smname) (10, 1829); implements the

start event of the CLK component. Procedure clkst starts by checking

the execution state of the CLK component. If the execution state is not

pend, then procedure execerr(name,num,E2) is called (10, 1891);

else procedure clkst checks the type of pulsed input. If it is a

start pulse, then, if the clock is running, procedure

delevent(clksym,name,update) is called to delete the update event of the

clock, which was scheduled by the arrival of a previous start input; the

current state and static output of the clock are set to running; the

update time for the timeout pulse is set; and the next update state

and static output are set to expired (10, 1843-1857); else, if the

pulsed input is reset, then the next update state and static output are

set to reset; the next update pulsed output is set to null; if the

www.manaraa.com

174

current state is running, then procedure delevent(clksym,name,update) is

called to delete the update event scheduled in the event file; the

current state of the clock is set to reset; and the update time is set

to tnow.

At the end, the execution state is set to idle and, if the update

time equals tnow, then the update event of the clock is executed, else an

update event of the clock is scheduled into the event file (10, 1877-

1887). This completes the execution of the start event of a CLK

component.

1. Procedure clkupdate(name; smname) (10, 1898); implements the

update event of the CLK component. If the update time does not equal

tnow, then procedure execerr(name,num,E3) is called (10, 1930);

else, if the next pulsed output equals timeout, then the current

pulsed output is set to timeout and procedure schdestxp(clk3ym.name,l)

is called to load the pulsed output into its destinations; if the next

static output does not equal the current static output, then the current

static output is assigned with the next static output value and

procedure schdestxs(clksym,name,l) is called to load the static output

into its destination. The current state is updated and the next pulsed

output is set to null. This completes the execution of the update event

of a CLK component.

m. Procedure envst(name;smname) (10, 2155); implements the

start event of the ENV component. Procedure envst starts out to check

the execution state. If the execution state is not pend, then procedure

execerr(name,num.E2) is called; else the execution state is set to

www.manaraa.com

175

busy; the update time is set; if the ENV function is terminal, then

procedure termfunction(name) is called to allow the user to examine and

assign system variables via the terminal; else, if the ENV function is

procedure, then procedure envfunction(procno) is called to execute the

user defined ENV procedure; else procedure execerr(name,num,E28) is

called (10, 2172-2175); the update time is set again in case the

component execution time, texec, is changed during the execution of the

ENV function; if the update time equals tnow, then the update event of

the ENV component is executed, else an update event of the ENV component

is scheduled into the event file. At the end, if a future start event

of the ENV component is to be scheduled and the time for the start event

is smaller than the next update time, then procedure execer(name,num,E29)

is called. This completes the execution of the start event of an ENV

component.

n. Procedure envupdate(name;smname) (10, 2214); implements the

update event of the ENV component. Procedure envupdate starts out to

check the execution state. If the execution state is not busy, then

procedure execerr(name,num,E4) is called (10, 2277); else, if the update

time does not equal tnow, then procedure execerr(name,num,E3) (10, 2274)

is called, else procedure envupdate starts to update the ENV component

(10, 2228-2270). The execution state is set to idle, all the current

pulsed inputs are set to null, the current pulsed outputs are updated

and loaded into their destinations, and the current static outputs are

updated and loaded into their destinations. This completes the

execution of the update event of the ENV component.

www.manaraa.com

176

7. Execution of ̂ terminal and procedure ENV

When a terminal ENV is executing, SAS will prompt the user with a

'//' sign on the terminal. The user can use the on-line Terminal Mode

Command Language, as described in Figure 3.14, to interactively query

the status of the global system, change the check option of the ENV

start expression, assign pulsed and static outputs of the currently

executing ENV, store the status of a named component or all the system

components, schedule a future start event and an update event of the

currently executing ENV, and stop the simulation system execution.

Procedure termfunction(name; smname) (12, 867) implements the

execution of a terminal ENV. Procedure termfunction starts out by

printing the ENV name and the current simulation time on the terminal

(12, 1222-1224). The input line variable, line[ii], is set to contain

only blank characters. A sign is printed on the terminal to

Indicate the system is in terminal mode (12, 1235). A line is read from

the terminal and saved in the Input line variable, line[ii] (12, 1238-

1243). If the number of characters for each command line exceeds 132

characters, then the terminal mode error code, err, is set to 1 (12,

1250); else the first non-blank character is picked out to match

with the terminal mode command code. If the non-blank character, cc, is

'P' or 'p', then procedure pout(name) is called to print out the

component status; else, if cc equals 'S' or 's', then procedure sout(name)

is called to save the component status in the file, sysfile; else, if cc^

equals 'A' or 'a', then procedure aout(name) is called to assign new

values for the currently executing ENV parameters; else, if £c equals 'F*

www.manaraa.com

177

Format Description

P name Print the status of the named component

P all Print the status of all the system components

P eventfile Print the contents of the event file

S name Save the current status of the named component
in the system data file

S all Save the current status of all the system
components in the system data file

A ^.n := zp Assign the value zp to the indexed pulsed
output of the currently executing environment

A ^.n := zs Assign the value zs to the indexed static
output of the currently executing environment

A STARTCHECK := option Assign the value option (never.
everytimechange or everyevent) to the
currently executing environment

F T Schedule a future start event for the
currently executing environment at time T, T
must be greater than or equal to tnow

F +T Schedule a future start event for the
currently executing environment at time tnow
+ T, T must be greater than or equal to zero

U T Schedule an update event for the currently
executing environment at time T, T must be
greater than or equal to tnow, this command
makes the currently executing environment
busy until T

U +T Schedule an update event for the currently
executing environment at time tnow + T, T
must be greater than or equal to zero, this
command makes the environment busy until tnow
+ T

E Exit from the terminal mode and continue
system execution

H Stop the system execution, exit from SAS

Figure 3.14. Terminal Mode Command Language

www.manaraa.com

178

or 'f, then procedure fevent(name) is called to indicate a future start

event of the currently executing ENV needs to be scheduleld; else, if cc

equals 'U' or 'u', then procedure fupdate(name) is called to set the

next update time of the currently executing ENV; else, if c£ equals 'H' or

'h', then the system halt variable is set true to indicate the end of the

system execution and the local variable exit is also set true to

indicate the end of the terminal mode execution; else, if £c equals 'E'

or 'e*, then the local variable exit is set true; else, if cc equals ' ',

then the local variable exit is set false to indicate a blank line and

try again; else the terminal mode error variable, err, is set to 2 to

indicate an unrecognized command (12, 1262-1275). If the error

variable, err, is greater than zero, then procedure perr is called to

print out the terminal mode command language error message (12, 1278).

The process is repeated until the local variable exit is set true (12,

1280). This completes the execution of a terminal ENV.

The implementation details of the procedures which process the

different terminal mode commands are not discussed in the dissertation but

users can refer to these listings: procedure pout(name;smname) (12,

1141), sout(name;smname) (12, 1171), aout(name:smname) (12, 997),

f event (name; smname) (12, 1078), f update(name; smname) (12, 1112), and

perr (12, 1199).

When a procedure ENV is to be executed, SAS calls the procedure

envfunction(num;integer) (20, 824). Procedure envfunction, which is

generated by the Transformation process, consists of all the user

www.manaraa.com

179

defined ENV procedures. The proper ENV procedure is referenced by

passing an integer, num, to the procedure envfunctlon(num;integer).

Within an ENV procedure, a set of SAS procedures can be called to

emulate the Terminal Mode Command Language.

Procedure pname(name;smname) (12, 749) emulates the P^ name terminal

command. Procedure pname calls procedure psm(output,name) to print out

the status of the named component at the user terminal.

Procedure pall (12, 757) emulates the P all terminal command.

Procedure pall calls procedure savesys(output) to print out the status

of all the system components at the terminal. Procedure

peventfile(outfile) (12, 837) emulates the P eventfile terminal command.

Procedure sname(name;smname) (12, 764) emulates the S name terminal

command. Procedure sname calls procedure psm(sysfile,name) to write the

status of the named component in the sysfile file, the system status data

file.

Procedure sail (12, 770) emulates the ̂ all terminal command.

Procedure sail calls procedure savesys(sysfile) to write the status of

all the system components in the sysfile file.

Procedure azp(num;integer;zpvalue;string) (12, 775) emulates the

AZP.n;=2p terminal command. Procedure azp sets the next pulsed output

variable, ntzpfnum], to equal zpvalue. Procedure azs(num;integer;

zsvalue;string) (12, 784) emulates the AZS.n;=zs terminal command.

Procedure azs sets the next static output variable, ntzs[num1, to equal

zsvalue. Procedure astartcheck(check;option) (12, 790) emulates the

www.manaraa.com

180

ASTARTCHECK;"option terminal command. Procedure astartcheck sets the

check option variable, checkopt, to check.

Procedure fabs(time;real) (12, 796) emulates the 2 terminal

command. Procedure feventabs starts out to check if the next start

event scheduling time is smaller than tnow. If so, then procedure

execerr(csmname,num,E33) is called, else two global variables are set to

indicate a start event of the component is to be scheduled at tstart

(12, 803). Procedure flnc(time;real) (12, 808) emulates the £ +T

terminal command. Procedure fine sets the two global variables to

indicate a start event of the component is to be scheduled at tstart.

Procedure uabs(tlme;real) (12, 820) emulates the £ 2 terminal

command and procedure uinc(time;real) (12, 829) emulates the U 4-T

terminal command.

8. Performance traces

SAS offers several trace functions in addition to those already

described for the Terminal Mode Command Language. In particular, the

user may specify that SAS sample and save the values of any specified

set of SAN system variables or the value of a boolean function of the

SAN system variables. The trace functions are invoked by augmenting the

initial SAN system model with one or more instances of the three kinds

of trace specifications: regular variable history, conditional variable

history, and regular expression history. Their specification formats are

shown in Figure 3.15.

www.manaraa.com

181

VARHISTORY name : regular

VARIABLES : varname, varname,... ;

DTHISTORY : Thist ;

CHECKOPT : never (or everytimechange or everyevent);

END;

VARHISTORY name : conditional

VARIABLES : varname, varname,... ;

CONDITION : boolean expression;

CHECKOPT : never (or everytimechange or everyevent);

END;

EXPHISTORY name : regular ;

EXPRESSION : boolean expression;

DTHISTORY : Thist ;

CHECKOPT : never (or everytimechange or everyevent);

END;

Figure 3.15. Trace utilities specification formats

www.manaraa.com

182

To specify a regular variable history instance, the VARHISTORY

instance type is first declared and the unique instance name given. The

word regular following the instance name indicates a regular variable

history instance. Next a set of SAN global variable names are specified to

indicate that SAS should sample and save the values of these variables.

The time interval at which the regular variable history trace is

sampled is given in DHISTORY. The check option of the regular variable

history trace is specified in the line CHECKOPT. A trace may be

disabled by setting CHECKOPT to never. If the CHECKOPT is

everytimechange, then SAS will take precisely one sample for the trace

just before advancing simulated time forward from the current event time

(i.e., after all model activity at the current event time has taken

place). If CHECKOPT is set to every event, SAS will sample and record

the designated variables after the execution of every event.

The conditional trace operates much the same as a regular trace,

the difference being that the sample times are determined dynamically

during simulation execution to correspond to those times when the

specified expression evaluates to true. The expression is tested for

the condition at the times specified in CHECKOPT. The regular

expression history trace operates similarly to the regular variable trace;

except that at the sampling time, the value of the boolean expression is

recorded for the regular expression history and the value of a set of

SAN variables are recorded for the regular variable history.

Procedure savehistregÇopt;option) (14, 744) implements the regular

variable history instance trace recording process. The parameter opt

www.manaraa.com

183

indicating whether the trace of the instance with check option

everyevent or everytimechange is to be recorded. Procedure savehlstory

starts out by assigning temp to point to the beginning of the regular

variable history record list. The data structures of different

performance traces are described in Chapter III.B.5. (Readers are

advised to refer to the data structures for better understanding.)

Procedure savehistreg then goes through a while loop (14, 751-756) to

examine all the regular variable history instances. It checks if the

instance's check option equals opt and the next trace recording time

equals tnow. If so, then procedure historynum(tempA.num) is called to

record the value of each variable defined in the instance. The variable

temp is set to point to the next instance record. The loop (14, 751-

756) is repeated until all the regular variable history instances are

checked.

Procedure historynum(num;integer) (20, 849) is generated by the

Transformation process. Procedure historynum consists of a sequence of

procedure calls to procedure history. In the example model, Slmple.dat,

there is only one regular variable history instance and only one

variable trace is specified in the instance, that is why there is only

one call to procedure history(fsmffsmlj.czsfl],1,1) (20, 854) to record

the value of the variable, fsm[fsml].cz8[l]. The details on the

generation of procedure historynum were described in Chapter IV.C.4.

Procedure history(tempvalue;string;m.n;integer) (14, 764) records

the value of the nth variable in the mth regular variable history

instance; n and m are the order of appearance in the SAN file.

www.manaraa.com

184

Procedure history starts out to get a new statlink record (1, 503-508).

The value of the variable and the current simulation time are recorded

(14, 774-775). The local variable tempvarhist is set to point to the

beginning of the regular variable history instance record list. The for

loop (14, 779-780) moves the pointer pointing to the nth regular

variable history instance record. The local variable, temphlst, is set

to point to the record of the first variable. The for loop (14, 784-

785) moves the pointer pointing to the record of the nth variable. The

statlink record, which holds the value of the variable and the current

simulation time, is inserted in the beginning of the list of the data

element of the variable. This completes the process of recording a

value of a variable in an instance.

Procedure savehistcon(opt:option) (20, 874) implements the

conditional variable history instance trace recording process, the

parameter opt indicating whether the trace of the instance with check

option everyevent or everytimechange is to be recorded. Procedure

savehistcon is generated by the Transformation process. The details on

the genertion of procedure savehistcon were described in Chapter

III.C.5. Procedure savehistcon starts out by setting temp pointing to

the beginning of the conditional variable history instance record list

(20, 878). If a conditional variable history instance is specified to

be recorded and the header of the instance record list is nil, then

procedure execerr(csmname,num,E22) is called. In the example model,

Simple.dat, there is only one conditional variable history instance and

only one variable trace is specified in the instance. Line (20, 882)

www.manaraa.com

185

checks If the instance's check option equals opt and function conexp(i)

is called to check if the conditional expression is true. If they are

both true, then procedure stathist(env[env2].zp[l],1,1) is called to

record the value of the variable, env[env2],czp[ll in the conditional

variable history instance record list. The implementation of procedure

stathlst(tempvalue;string;m,n;lnteger) (14, 795) is similar to that of

procedure history(tempvalue; string,m.n; integer) (14, 764). Readers can

refer to the description of procedure history to understand the

implementation of procedure stathist.

Procedure saveexphist(opt!option) (14, 846) implements the regular

expression history instance trace recording process, the parameter opt

indicating whether the trace of the instance with check option

everyevent or everytlmechange is to be recorded. Procedure saveexphist

starts out by assigning temp to point to the beginning of the regular

expression history record list (14, 852). Procedure saveexphist then

goes through a while loop (14, 855-861) to examine all the regular

expression history instances. It checks if the instance's check option

equals opt and the next trace recording time equals tnow. If so, then

procedure insstatus(cexpst(l),temp) is called to record the boolean

value of the expression in the instance. The local variable temp is set

to point to the next instance record. The loop (14, 855-861) is

repeated until all the regular expression history instances are checked.

Procedure insstatus(cst: boolean, tempexphist:exphist link) (14, 826)

starts out by getting a new status record (1, 513-518) and stores the

boolean value, est and the current simulation time in the new status

www.manaraa.com

186

record (14, 832-835). The new status record is then inserted in the

current regular expression history record pointed to by the pointer

tempexphist (14, 839-840).

When procedure insstatus(cexpst(l).temp) is called inside procedure

saveexphist, the boolean value, est, is obtained by calling the

function cexpst(l) (14, 858). Function cexpst(i;integer);boolean (20,

890) was generated by the Transformation process. This function

consists of all the boolean expressions specified in the regular

expression history instance. In the example model, Simple.dat, there is

only one expression history trace to be recorded. The expression is

evaluated and assigned to the function variable cexpst (20, 895).

9. Initialization specification

The user may optionally include an initialization specification as

shown in Figure 3.16 in the SAN system specification. The user may

assign the values of simulation time at which the run should begin

(tbeg) and end (tend), else the default values 0.0 and 10.0 are

assigned, respectively. The user may indicate whether SAS should trap

multiple simultaneous pulsed inputs to single components, other than

environments for which the trap function is individually specified. If

the SAS variable mulpulsecheck is set to true, then SAS will trap the

above mentioned multiple simultaneous pulsed inputs. The default value

for mulpulsecheck is false. The user may also reassign the seed value

of the random number generating function, seed. The default value for

seed is 23467823.

www.manaraa.com

187

INIT

tbeg : Tbeg;

tend : Tend ;

mulpulsecheck : true (or false)

seed : integer;

END;

Figure 3.16. Initialization specification format

www.manaraa.com

188

IV. APPLICATION OF THE STATE ARCHITECTURE NOTATION

AND STATE ARCHITECTURE SIMULATOR IN SIMULATING

DATA COMMUNICATION PROTOCOLS

This chapter explains the operational steps in running SAS. It

begins with the presentation of a SAN model, moves to the Transformation

process and through to the creation of the SAN model executable image.

This chapter also describes the steps involved in executing the SAN

model executable image and different steps in correcting SAN model

specification errors. The last three sections illustrate the use of the

SAN and the SAS in simulating data communication protocols by three

examples. The first example simulates a small size discrete system with

three components. The purpose of this example is to walk through the

steps in specifying a SAN model, creating an executable image of the SAN

model and executing the SAN model in the SAS environment. The second

example simulates the start-stop protocol [Piatkowski 1981]. We use all

nine kinds of components in the Start-Stop SAN model. The last example

illustrates the use of the SAN and the SAS in simulating a fairly

complicated data communication protocol, the Advanced Data Communication

Control Procedures (ADCCP) [Piatkowski 1979].

A. Operational Steps in Running SAS

In using SAS to exercise a SAN model, there are two main steps to

follow.

www.manaraa.com

189

1. Specification

The user specifies the system using the SAN formats as described in

Chapter II and stores the specification In a data file e.g.

simple.dat;1, where "simple" is the name of the data file.

2. Creation and execution of an executable image

The user invokes the SAB procedure SAS.COM to create an executable

image for the simulated system. There are five steps in the creation

and execution of the executable image, namely TRANSFORM, APPEND,

COMPILE, LINK and RUN.

a. TRANSFORM; performs the Transformation process as

described in Chapter III.C. Before executing the SAN model, SAS

scans the SAN model and compiles the procedures and boolean expressions

into global PASCAL procedures. Actually, SAS generates ten different

procedures as described in the Transformation process. They are as

follows :

fsmfunc.pas contains all the procedures declared in the FSM

instances

cfpfunc.pas contains all the procedures declared in the CFP

Instances

cfsfunc.pas contains all the procedures declared in the CFS

Instances

envfunc.pas contains all the procedures declared in the ENV

instances

www.manaraa.com

190

envexpfil.pas

hlstfile.pas

statsup.pas

conhistfil.pas

cexpflle.pas

iniset.pas

b. APPEND:

contains all the boolean expressions declared

in the ENV instances

contains the procedure historynum(num;integer)

which is used to sample and save system

variables defined in the regular history

instances

contains the function conexp(num;Integer)

;boolean, which holds all the boolean

expressions defined in the conditional variable

history

contains the procedure savehistcon(opt;

option), which is used to save system variables

defined in the conditional variable history

instances

contains the function cexpst(num;integer):

boolean, which holds all the boolean

expressions defined in the regular expression

history Instances

establishes the enumerated names of all

instances corresponding to the component name;

establishes an array of string variables which

contains the strings declared in the procedure

of the SAN specification.

merges the above ten procedures together into one

PASCAL module, USER.PAS.

www.manaraa.com

191

c. COMPILE; compiles the USER.PAS module to produce an object

mode file, USER.OBJ.

d. LINK; links the object module, USER.OBJ, with the SAS

predefined library SAS.OLB to produce an executable image for the

simulated system, namely SAS.EXE

e. RUN; executes the executable image of the simulated system.

To invoke the SAS command procedure, the user types in the

following command;

"@sas filename step".

Two parameters must be supplied to the command procedure;

"filename" representing the SAN file containing the SAN model and "step"

representing the starting step of the SAS command procedure. There are

five steps in the SAS command procedure as mentioned above. Before a

simulated system is executed, its executable image has to be created

first. To do this, the user should invoke the command procedure with

step="TRANSFORM" to perform the Transformation process. For example;

"0sas filename TRANSFORM".

SAS will print out the component names in the SAN model on the

terminal, when each component is being transformed. The details of the

SAS output message on the terminal will be demonstrated via an example

in the next section. If there is any error in the Transformation

process, then SAS prints out the following message on the terminal;

"TRANSFORMATION ERRORS

ERRORS . . . Take appropriate step to do correction

To check error, type errfile.dat".

www.manaraa.com

192

The details of the error correction steps will be explained later

in this section. If there is no error in the Transformation process,

the ten different procedures are generated as mentioned above and SAS

prints out the following message;

"TRANSFORMATION IS GOOD

Append user Module".

The above message indisafes that SAS is in the APPEND step to merge

all the procedures into a PASCAL module, USER.PAS. At the end of the

APPEND step, SAS continues on to the COMPILE step and prints out the

following message:

"Compile USER.PAS".

In this step, the module USER.PAS is submitted to the PASCAL

compiler to generate the object module, USER.OBJ. If there is any error

in compiling the USER.PAS, the PASCAL compiler will print out the error

message on the terminal and SAS will stop and print out the following

message :

"SAS TERMINATED".

If there is no error in compiling the USER.PAS, SAS will print out

the following message;

"Link USER.OBJ with SAS.OLB".

The above message indicates that the USER.OBJ is linked with the

SAS predefined library, SAS.OLB, to produce the simulated system

executable image, SAS.EXE. At the end of the LINK step, SAS prints out

the following message;

www.manaraa.com

193

"System is ready to run

To run the system just type 'run'

run or exit".

At this point, the user can type in 'run' to execute the simulation

system. If the user types in 'exit' then SAS exits from its command

procedure and returns to the VAX command mode, which will print out a

'$' sign to indicate the VAX command mode. After the simulated system

executable image is created, the user can invoke the SAS command

procedure to execute the system without going through the Transformation

process again.

"@sas filename run"

There are three major parts in the execution of the simulated

system under the SAS environment. First SAS will call the Data Input

process to read the SAN specification of the simulated system. In case

of any SAN syntax error, SAS prints out an error message on the terminal

and stops. After SAS executes its Data Input process, it will ask the

user if the current simulated system execution starts with New

Initialization or Restart Initialization. SAS prompts the user with the

message on the terminal:

"New Initialization: Y=Yes or N=No".

A user response of 'N' or 'n' means the current execution starts

with Restart Initialization; otherwise, the current simulated system

execution starts with New Initialization. If it is a New

Initialization, SAS will check if the simulated system is initially

stable or not. If the system is unstable, SÀS stops and prompts the

www.manaraa.com

194

user with a message:

"SYSTEM IS UNSTABLE".

If the system is stable, SAS will prompt the user with the message:

"SYSTEM IS STABLE".

SAS then starts to execute the System Executive. In case an

execution error occurs, the System Executive releases its control to the

System-Monitor which allows the user to examine the current system

status. The user can use the Terminal Mode Command Languages to examine

the status of all the system components. The user may decide to

continue or halt the system execution. If an execution error occurs,

the execution of the event of the error component is aborted. If the

user decides to continue on the system execution, certain unexpected

system execution errors may be generated because of the previous

execution error. Examples of the use of the Terminal Mode Command

Languages will be discussed in the next section. If no execution error

occurs, the System Executive continues execution of the simulated system

until the current simulation time exceeds the ending time of the

simulation or the system halt variable is set to true. When the

execution of the System Executive finishes, SAS asks the user if the

current simulated system status need to be saved by prompting the

following message:

"Do you want to save the current simulated system status?

Y=Yes N=No?".

www.manaraa.com

195

A user response of 'Y' or 'y' means the current simulated system

status will be saved in the rsfile.dat file for future Restart

Initialization.

At the end of system execution, the system variable traces are

stored in the datafile.dat file; and if any system status information

had been saved during the execution, they are stored in the sysflle.dat

file. In the next section, we will describe several examples of using

SAN and SAS to simulate systems.

3. General steps on errors correction

In case any error occurred In the process of creating an executable

image of the simulated system, the user has to take appropriate steps to

make corrections and invoke the SAS command procedure again. Depending

on which step the error occurred in, different corrections are needed.

If an error occurred in the TRANSFORM step, then the user should

take the following actions:

a) Examine the errfile.dat file to find out what kind of errors

occurred in the Transformation process. Error messages are

located at the end of the errfile.dat file.

b) Make necessary corrections to the SAN file as suggested by the

error message.

c) Try again by typing "@sas filename transform".

If any error occurred in the COMPILE step, then the user should take

the following actions;

www.manaraa.com

196

a) Examine the user.lis file to locate the error; user.lis is a

source listing file generated by the PASCAL compiler in

compiling user.pas.

b) Make necessary corrections to the SAN file as suggested by the

error messages.

c) Try again by typing "@sas filename transform".

No error should occur in the APPEND and LINK steps. In case there

is an error, the error should be reported to the implementor or

maintainer of SAS.

At the RUN step, there are three major parts in the execution of

of the simulated system under the SAS environment as mentioned in the

previous sub-section. During the Data Input process, if a SAN syntax

error occurred, the user should take the following correction steps:

a) Examine the errfile.dat file to locate the error. Error

messages are located at the end of the errfile.dat file.

b) Make necessary corrections to the SAN file as suggested by the

error messages.

c) Users are encouraged to consider trying the RUN step again by

typing "@sas filename run". To start at the RUN step, the

users should make sure that none of the following SAN

specifications were changed in correcting the error:

i) Deletion or addition of a component instance,

ii) Change of instance name,

ill) Reordering of the instances in the specification SAN

file,

www.manaraa.com

197

Iv) Changes in procedure or boolean expression declaration,

v) Changes of variable names in the variable history trace.

d) Even though it is usually safe to restart from the RUN step,

if the above changes are not made, the user can always start

from the TRANSFORM step by typing "@sas filename transform".

In this case, user.pas, is always compatible to the SAN model.

During the New Initialization process, if the simulated system is

unstable, the user should take the following corrective steps:

a) Examine the sysfile.dat file to locate which components are

initially unstable.

b) Make necessary corrections to the initial values of the system

components, or to the system logic by addition or deletion of

components, or charging the system component interconnections.

c), d) Same as in the Data Input process.

During the System Executive process, SAS may encounter some system

execution errors. When this happens, SAS will print out the error

message identifying the faulty component, and release control to the

System-Monitor, which allows the user to examine the current system

status. The user can use the Terminal Mode Command Language to examine

the status of all system components and decide to continue or halt the

system execution. Details using the Terminal Mode Command Languages

will be shown in the next section.

www.manaraa.com

198

B. A Simple Discrete System Simulation

1. Description of the SAN model

This sub-section Illustrates the use of the SAN and the SAS to

simulate discrete systems via a simple discrete system, stored in the

file, slmple.dat. A block diagram of the system is shown in Figure 4.1

and the SAN model is listed in Figure 4.2. Users may notice four

different syntax errors in the SAN model of Figure 4.2 shown in circles.

Those errors are purposely left in the SAN model for the demonstration

of error correction steps in the creation and execution of the SAN

model executable image.

The system has three components. One of them is a terminal ENV

component named Terminal. The execution time of Terminal is zero and

the start expression check option (STARTEXPCHECK) is everytimechange,

which allows the start event of Terminal to be scheduled after all the

events in the current event set are executed. Terminal has a pulsed

output connected to the pulsed input of the ENV component named

Pulsegen. Pulsegen is a procedure ENV. The execution time of Pulsegen

is one time unit and the STARTEXPCHECK Is never. Upon the arrival of a

start pulse from Terminal, Pulsegen will produce either a 'reset' or

'inc' pulse at its pulsed output. Procedure Pulsegenproc performs the

function of randomly producing either a 'reset' or 'inc' pulse. The

pulsed output is loaded into its destination component named Counter.

Counter is a FSM component with execution time equal to zero. Counter

records the number of 'inc' pulses that have arrived at its pulsed input

www.manaraa.com

ENV

ZP. l

Terminal

ENV

XP. l ZP. l

Pulsegen

FSM

XP.l ZS. l

Counter

ENV

ZP. l

Terminal
start(p)

ENV

XP. l ZP. l

Pulsegen
reset, inc(p)

FSM

XP.l ZS. l

Counter
0 ,1 ,2 ,3 ,
4 ,5(s)

Figure 4.1. Block diagram of a simple discrete system

www.manaraa.com

200

ENVTermlnnI : lntorln:od
ZP.1 TO Pu I sog)n.XP. 1 : start;
FUNCTION : termina I;
doftoxoc : 0.0;
STARTEXP : trU3!
STARTEXPCHECK : evorytltnechange;

Pulsegon : Intorloced^-—» ®
XP.1 FROM Termgjna I .ZP. 1 : start;
ZP.1 TO Counter.XP.1 : reset, Ino;
FUNCTION : procedure

procedure Pu Isegenproo;
var I: integer:

ararraytl. .2] or string;
begin

aC1 Ji = ' reset
oC2]; = ' lnci
I : = randlnt(5);
with envLUSPuIsegenl , updatestate do
begin

lf(i=î) then ntzpt1]:=a[1]
eisp ntzpll];=a[2];

end; lend wlth \
end;

END;
dertexeo!1.0;
STARTEXP : raise;
STARTEXPCHECK : never;

END;

FSM Counter : Interlaced
S : 0,1,2,3,1),5; /r ^
derslnit : 0;
XP.1 FROM Pul segen.Z^I : reset, Ino;
ZS.1 UNCONNECTEO : 0,1,2,3,0,5;
FNS : procedure

If cxp.1='reset' then nts:='o'
else /T\
begin

Ir cs='Oj/then nts:='1'
else lf(S)s='l ' then nts: = '2'
else i r cs='2' then nts!='3'
else If cs='3' then nts;='%'
else i r cs='f)' then nts: = ' 5 '
else nts:='5';

end;
END;
FOUTS : procedure

ntzs.1:=nts;
END;
dertexeo ; 0.0;

END;

VARHISTORY 1raoeCount ; regular
VARIABLES : Counter.czs.t;
DTHISTORY : 1.0;
CHECKOPT : everytImechange;

END;

VARHISTORY TracePulse : conditional
VARIABLES ! PuIsegen.C2p.1 ;
CONDITION : Pulsegen.czp.1='reset';
CHECKOPT : everytImechange;

END;

EXPHISTORY T r a c e s t a t i i B : regular
EXPRESSION : (Pulsegen.czp.1='Ino')and(Counter.czs.1
DTHISTORY : 1.0;
CHECKOPT : everytImechange;

END;

INIT
tbeg : 1.0;
tend : 10.0;

END;

Figure 4.2. The SAN model of a simple discrete system

www.manaraa.com

201

up to five. Whenever a 'reset' pulse arrives at Counter, the state of

Counter will be set to '0'. Both the FNS and FOUTS of Counter are

specified via a procedure. The SAN model also includes three different

kinds of performance traces. The regular variable history instance,

TraceCount, records the static output of Counter every time unit; it

records just before simulation time is advanced. The conditional

variable history instance TracePulse, records the pulsed output of

Pulsegen whenever its value is 'reset'. The regular expression history

records the boolean value of the expression (Pulsegen.czp.l^'inc') and

(Counter.czs.l= ' 1') every time unit, it records just before simulation

time is advanced. At the end, the Initialization instance sets the

simulation beginning time, tbeg, and the simulation ending time, tend.

2. Creation of the simulated system executable image

The SAN model of Figure 4.2 is saved in file simple.dat. The

simulated system executable image is created by invoking the SAS command

procedure as shown in Figure 4.3. For clear exposition, we have

underlined the commands typed in by users in Figure 4.3 and added some

line numbers.

After the SAN model is created, the user types in the command in

line (1) to invoke the command procedure SAS.COM by passing the SAN

model file name, simple.dat, and the step, transform(l). SAS will start

the Transformation process. During the Transformation process, SAS

prints out the component names being processed on the terminal ("csm:=

Terminal" means that the current state machine is Terminal). After

www.manaraa.com

(1) $ gsas counter»dat transform
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

csmî= Terminal
DONE

(2)TRANSFORMATION ERRORS
(3)ERRORS*,,Take appropriate step to do correction
(4)To check error* type errfile.dat
(5) $ type errfile,dat

ENV Terminal » interlaced
ZP,1 TO Pulseaen,XP,l : start;
FUNCTION : terminal;
deftexec « 0«0;
STARTEXP : true;
STARTEXPCHECK : everytimechanâe;

END;

(6) EVN """Pulseâen • interlaced
(7) error number = 33 in the line number 9
(8) error* undesired name******
(9) It can only be FSM, CFP, CFS, DELP,
(10) DELS, CLK, DER, QUE, ENV, VARHISTORY
(11) EXPHISTORY, INIT, OR END,
(12) $ ed counter,dat

Edit: DRB0;[B017044]C0UNTER,DAT;i
(13) *sEVNENV9

00009 ENV Pulsesien , interlaced
(14) *eb

CDRBO:[B0170443C0UNTER,DAT ; 1]
(15)$ @sas counter,dat transform

PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
csm*= Terminal
csm*= Pulseëen
csm*= Counter
DONE

(16) TRANSFORMATION ERRORS
(17)ERRORS***Take appropriate step to do correction
(18) To check error, type errfile*dat
(19)$ type errfile*dat

ENV Terminal * interlaced
ZP*1 TO Pulseaen*XP*l * start;
FUNCTION } terminai;
deftexec * O.O;
STARTEXP i true;
STARTEXPCHECK * everytimechande;

END;

Figure 4.3. Example run to create an executable image for the SAN
model, simple.dat

www.manaraa.com

203

FSM Counter « interlaced
S t 0 , 1 , 2 , 3 , 4 , 5 ;
defsinit • Of
XP»1 FROM Pulseden,ZS,l i reset,incî
ZS.l UNCONNECTED : 0,1,2,3,4,5?
FNS } procedure

if cxp*l='reset' then nts*='0'
else
beain

if cs='0' then nts'='l'
(20) else if xs=^""'l' then nts{='2'
(21) error number = 74 in the line number
(22)'error. • unexpected character string
(23) $ ed counter «dat

Edit: DRB0;[B017044]C0UNTER,DAT;i
(24) *sxscs42

00042 else if cs='l' then nts
(25) !Kgb

[DRB0;[BO17044]C0UNTER,DAT;i]
(26) $ nniin+.pr.riat t.rcincijlnjint-

PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
(27) Steps unclear
(28) SAS TERMINATED
(29) $ Gsas counter,dat transform

PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
(30) csm*= Terminal
(31) csml= Pulseaen
(32) csml= Counter
(33) VARHIST name*= TraceCount
(34) VARHIST name«= TracePulse
(35) EXPHIST name •= Tracestatus
(36) DONE
(37) TRANSFORMATION IS GOOD
(38) Append user module
(39) Compile user.pas
(40)'LiriK user*obJ with sas library
(41) System is ready to run
{j2)To run the system Just type 'run'
(43) run or exit! exit

$. .

www.manaraa.com

204

processing the component, Terminal, the Transformation process

encounters a SAN specification error. SAS then terminates the

Transformation process and prints out lines (2), (3), and (4) on the

terminal. In (5), we type the errfile.dat file to locate the error.

From (6) to (11), we notice that there is a misspelling of the instance

kind ENV. From (12) to (14), we edit the simple.dat file to change the

misspelled EVN to ENV. In (15), the SAS command procedure is invoked

again to start from the Transformation process. While the

Transformation process scans the component. Counter, it stops and

indicates a Transformation error in (16) to (18). In (19), we type the

errfile.dat file to locate the error. From (20) to (22), we notice that

the string 'xs' can not exit by Itself within a local procedure. The

string can either be 'xs.n', 'xp.n', or 'cs', where n is an Integer. In

the example SAN model, the string 'cs' is expected at the above

position. From (23) to (25), we edit the simple.dat file to change the

string 'xs' to 'cs'. In (26), the SAS command procedure is invoked

again, but this time the step is misspelled. SAS responds with the

messages in (27) and (28) on the terminal. In (29), we invoke the SAS

command procedure again. This time SAS prints out all the instance

names and the message "TRANSFORMATION IS GOOD" to indicate that there Is

no SAN error detected in the Transformation process from (30) to (37).

SAS then prints out the message "Append user module" to indicate that

SAS is merging all the transformed procedures into a user module,

user.pas. In (39), SAS prints out the message "Compile user.pas" to

indicate that SAS had submitted the user:pas file to the PASCAL compiler

www.manaraa.com

205

to compile the user.pas file. There is no compilation error in the

user.pas file. In (40), SAS points out the message "Link user.obj with

sas library" to indicate that the PASCAL linker is linking the user.obj

with the sas.olb to produce an executable image of the SAN model. At

the end of the linking process, SAS prompts the user with the messages

in (41) to (43) to ask the user if he wants to execute the SAN model

executable image or stop at this point. We type in the word 'exit' in

(43) to exit from the SAS command procedure. This completes the

creation of a SAN model executable image.

3. Execution of the SAN model executable image

In this sub-section, we will walk through the detailed steps to

execute the SAN model in the file simple.dat. Figure 4.4 consists of a

list of commands and responses in executing the SAN model executable

image (simulated system). For clear exposition, the lines typed by the

users are underlined and some line numbers added. In the actual run,

the underlines do not appear. In line (1), we type in the command to

invoke the SAS command procedure to execute the simulated system. While

the SAS scans the SAN file, simple.dat, the SAS detects an undefined

component name (smname) in line (10) of the simple.dat file. In (2),

(3), and (4), the VAX editing commands are used to change the component

name from Termainal to Terminal. In (5), we invoke the SAS command

procedure to execute the simulated system again. This time we encounter

another syntax error in (6). In (7), (8) and (9), we use the VAX editing

commands to change 'ZS' to 'ZP'.

www.manaraa.com

206

(1) $ 8aas counter,dat run
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

temPsm=Termin3l
tempsm-Pulseaen
DONE
ENV Terminal » interlaced

ZP* 1 TO Pulseaen.XP, 1 t start,
FUNCTION ; terminai;
deftexec J O.OO0OO0OO0E+OO>
STARTEXP : true;
STARTEXPCHECK ! everatimechanëe;

END;

ENV Pulseaen • interlaced
XP. 1 FROM Termainal."""ZP,l * start;,

error number = 34 in the line number 10
error* undefined smname
Total number of errors is 1

(2) $ ed counter.dat
Edit: DRBOJCBO170443C0UNTER.DAT;1

(3) *5Termainal*Terminal$10
00010 XP.l FROM Terminal,ZP.l • start;

(4)
CDRBO:CB017044DC0UNTER.DAT;13

(5)$ gsas counter,dat run
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

tempsm=Terminal
tempsmepulseaen
temmsm=Counter
DONE
ENV Terminal t interlaced

ZP, 1 TO Pulseaen,XP,
FUNCTION : terminal;
deftexec : O.OOOOOOOOOE+OO;
STARTEXP : true;
STARTEXPCHECK t everatimechande;

END;

ENV Pulseaen « interlaced
XP. 1 FROM Terminal.ZP.
ZP. 1 TO Counter.XP.
FUNCTION { procedure

function randint< maxtinteaer)tinteger;extern ;
procedure Pulseaenproc;
var iJinteaer;

a.arraaCl. .211 of string;
beain

1 { start;

1 . start;
; reset,inc;

Figure 4.4. Example run in executing the SAN model executable Image

www.manaraa.com

207

a[l]; = 'reset ' '
aC23J»'inc '}
i*=randint(5)f
with env[U$Pulseaen] > updatestate do
beain

if (i=3) then ntzp[l]:=a[l]
else ntzp[l]*=a[2];

end? {end with}
end;

END*
deftexec: 1 » OOOOOOOOOE+00 »
STARTEXP : false;
STARTEXPCHECK : never;

END;

FSM Counter t interlaced
S i Oflf2f3f4p5;
defsinit J o;

(6) XP. 1 FROM Pulseaen.ZS.—1 : reset,inc;
error number = 29 in the line number 36
errorJZP is expected.
Total number of errors is 1

(7)$ ed counter.dat
Edit : DRBO J CB017044DC0UNTER.DAT;1

fm*sZSZP36
00036 XP,1 FROM Pulseden.ZP»1 « reset,inc;

(9) *eb
[DRBO:CB0170443C0UNTER,DAT;i]

(10)$ counter,dat run
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

(11) tempsm=Terminal
(12)temPsm=Pulseaen
(13) tempsm=Counter
(14).New Initialization ? Y=Yes or N=No, Y

SYSTEM INITIALIZATION Î CHECKING FOR UNSTABLE MACHINE
(15): ** SYSTEM IS STABLE **

SYSTEM HAS BEEN STARTED
(16) ' SCHEDULE ENV Terminal START 1 .OOOOOOOOOE+00

EXECUTE t ENV Terminal START 1.OOOOOOOOOE+00

(17)'ENV : Terminal TNOW:= 1.OOOOOOOOOE+00
(18) *p all

SYSTEM STATUS AT TNOW := l,000000000E+00

FSM Counter
cs:= 0
cxp* 1}= -
czs* 1«= 0
Execution Delay J= O.OOOOOOOOOE+00
Execstatus:= IDLE

Figure 4.4. (continued)

www.manaraa.com

208

ENV Terminal
CZP, -

Execution time»» O.OOOOOOOOOE+00
Execstatus*» BUSY
STARTEXPCHECK;= EVERYTIMECHANGE
updatetime's l.OOOOOOOOOE+00
ntzp* i;=-

ENV Pulseaen
CXP» 1;= -

CZP» l'a -

Execution time«= 1 «OOOOOOOOOE-fOO
Execstatus;= IDLE
STARTEXPCHECK:= NEVER

(19) *s all
(20) #a ZP,i;=strt

ZP or zs number J= 1
errnum«=4,,».output value is not valid

(21) *a ZP»lt=»start—
ZP or zs number{= 1

(22) *e
(23) SCHEDULE ENV Pulseden START 1»OOOOOOOOOE+00
(24) EXECUTE : ENV Pulseaen START 1.OOOOOOOOOE+00
(25) SCHEDULE ENV Pulseden UPDATE 2.000000000E+00
(26) SCHEDULE ENV Terminal START 1»000000000E+00
(27) EXECUTE Î ENV Terminal START 1»OOOOOOOOOE+00

ENV : Terminal TNOW;= 1.OOOOOOOOOE+00
(28) #p eventfile

Eventset*time;= 1«OOOOOOOOOE+OO Eventset»count«=>

Eventset*time(= 2*0O0OO0OO0E+OO Eventset*count
UPDATE ENV Pulseâen

(29) *S.
(30) EXECUTE î ENV Pulseaen UPDATE 2.000000000E+00
(31) SCHEDULE FSM Counter START 2.000000000E+00
(32) EXECUTE I FSM Counter START 2,0000O0O0OE+OO
(33) SCHEDULE ENV Terminal START 2.000000000E+00

EXECUTE : ENV Terminal START 2.000000000E+00

(34) ENV : Terminal TNOW;= 2.000000000E+00
(35) all

errnum»=2*...unrecognized command
(36) *.P f>n

SYSTEM STATUS AT TNOW := 2.000000000E+00

FSM Counter
(37) CS:= 1

CXP* i;= -
czs. 11

Figure 4.4. (continued)

www.manaraa.com

209

Execution Delay*= 0*OOOOOOOOOE-fOO
Execst3tus(= IDLE

ENV Terminal
czp, 1'= -
Execution time*= O.OOOOOOOOOE+00
Execstatusia BUSY
STARTEXPCHECK:= EVERYTIMECHANQE
upd8tetime*= 2.000000000E+00
ntzp, i;=-

ENV Pulseaen
CXP. 1»=» -
CZP. 1:= inc
Execution time5= l.OOOOOOOOOE+00
Execstatus*= IDLE
STARTEXPCHECK:= NEVER

(38) *8 ZP»l:=start
zp or zs number:™ 1

(39) *2.
(40) SCHEDULE —- ENV Pulseaen
(41)EXECUTE : ENV Pulseaen START
(42) SCHEDULE ——— ENV Pulseaen
(43) SCHEDULE ENV Terminal
(44) EXECUTE : ENV Terminal START

START 2.000000000E+00
2.000000000E+00
UPDATE 3.000000000E+00
START 2.000000000E+00

2,OOO00O0OOE+00

ENV : Terminal TNOW:
(45)•P Pulseaen

ENV Pulseaen
CXP. IJa start
CZP. 15= inc
Execution time.= 1.OOOOOOOOOE+00
Execstatus;= BUSY
STARTEXPCHECK:= NEVER
updatetimei- 3.000000000E+00
ntzp. i;=inc

(46) •
(47)EXECUTE : ENV Pulseaen UPDATE
(48)—SCHEDULE FSM Counter
(49)EXECUTE : FSM Counter START
(50) SCHEDULE ENV Terminal

EXECUTE { ENV Terminal START

2.000000000E+00

3.000000000E+00
START 3.000000000E+00

3.000000000E+00
START 3.000000000E+00

3.000000000E+00

(51) ENV : Terminal
(52) *p Counter

FSM Counter
(53)CS;= 2

CXP. 1:= -
CZS. L'A 2
Execution Delay«=
Execstatus;= IDLE

TNOW): 3.000000000E+00

O.OOOOOOOOOE+00

Fleure 4.4. (continued)

www.manaraa.com

210

(54) *aZP« 1 {"Start
ZI» or zs number's i

(55) *a.
SCHEDULE —- ENV Pulseâen

EXECUTE : ENV Pulse<en START
SCHEDULE ENV Pulseden

——- SCHEDULE ENV Terminal
EXECUTE t ENV Terminal START

START 3,OOOOOOOOOE+00
3.000000000E+00
UPDATE 4.000000000E+00
START 3.000000000E+00
3.000000000E+00

ENV : Terminal TNOW*
(56) *p Pulseden

- ENV Pulseaen
cxp, 1 «=: start
CZP» 1«= inc
Execution time{=« 1 «OOOOOOOOOE-fOO
Execstatus»= BUSY
STARTEXPCHECK:= NEVER
upd3tetimet=> 4,OO0O0OOOOE+OO
ntzp, i;=inc

(57) #£.

3,000O00000E+00

EXECUTE : ENV Pulseaen UPDATE 4,0O0OOOOO0E+OO
SCHEDULE - FSM Counter START 4,OOOOOOOOOE+00

EXECUTE : FSM Counter START 4,0000000005+00
SCHEDULE -—— ENV Terminal START 4.000000000E+00

EXECUTE ; ENV Terminal START 4.000000000E+00

ENV i Terminal TNOW;= 4,OO0OO0OOOE+OO
(58) *3 ZP,i;=start

ZP or zs number « = 1
(59) •£.

— S C H E D U L E ENV Pulseaen START 4.000000000E+00
EXECUTE i ENV Pulseaen START 4,000000000E+00

SCHEDULE - ENV Pulseden UPDATE 5,000000000E+00
SCHEDULE - ENV Terminal START 4,000000000E+00

EXECUTE Î ENV Terminal START 4,OOOOOOOOOE+00

ENV i Terminal TNOW;= 4,000000000E+00
(60) =>p Pulseaen

ENV Pulseaen
CXP, 1*= start
CZP» 1;= inc
Execution time*= 1,000000000E+00
Execstatus:= BUSY
STARTEXPCHECK:= NEVER
updatetime«= 5,0O0OO0OOOE+OO
ntzp, i;=inc

(61) #e
EXECUTE : ENV Pulseaen UPDATE
——— SCHEDULE FSM Counter
EXECUTE { FSM Counter START
—SCHEDULE ENV Terminal

5,000000000E+00
START 5,00O0OO0O0E+00

5.000000000E+00
START 5,000000000E+00

Figure 4.4. (continued)

www.manaraa.com

211

EXECUTE t ENV Terminal START 5.000000000E+00

ENV » Terminal
(62) Counter

FSM Counter
est" 4
oxp, 1;= -
czs* 1(= 4
Execution Delay*=
Execstatusia IDLE

(63) *3 ZP.l:=start

TNOWta 5.000000000E+00

O.OOOOOOOOOE+00

(64)
ZP
*

or zs number;=

— S C H E D U L E E N V P u l s e s i e n
EXECUTE l ENV Pulseâen START

SCHEDULE -—— ENV Pulseâen
——— SCHEDULE ENV Terminal
EXECUTE ; ENV Terminal START

START S.OOOOOOOOOE+00
5»000000000E+00
UPDATE 6.000000000E+00
START 5.000000000E+00

5.000000000E+00

TNOW;= 5.000000000E+00

l.OOOOOOOOOE-fOO

ENV { Terminal
(65) Pulseaen

ENV Pulseâen
cxp» 1»= start
czp* 1;= inc
Execution time;=
Execstatus«= BUSY
STARTEXPCHECK:= NEVER
updatetime(= 6»000000000E+00
ntzp, l*=inc

(66) • § - •
EXECUTE : ENV Pulseâen UPDATE
———— SCHEDULE —— FSM Counter
EXECUTE t FSM Counter START

S C H E D U L E — E N V T e r m i n a l
EXECUTE : ENV Terminal START

6,000000000E+00
START <S,OOOOOOOOOE+00

6,000000000E+00
START 6.000000000E+00

6.000000000E+00

ENV : Terminal TNOW:= 6.000000000E+00
(67) #p Counter

FSM Counter
cs;= 5
CXP* 1*= -
czs, 1'= 5
Execution Delaw*= O.OOOOOOOOOE+00
Execstatus«= IDLE

(68) ZP.l:=statt
zp or zs number»» 1

(69) #2.
——— SCHEDULE ENV Pulseâen
EXECUTE : ENV Pulseaen START
——— SCHEDULE —— ENV Pulseaen

START 6.000000000E+00
6»OOOOOOOOOE+00
UPDATE 7.000000000E+00

Figure 4.4. (continued)

www.manaraa.com

212

——— SCHEDULE ENV Terminal
EXECUTE : ENV Terminal START

START <i,000O00000E+00
6.000000000E+00

(70)ENV i Terminal TNOW:= 6»000000000E+00
(71) *P PUlseaen

errnum;=5,..,smname is not defined
(72) Pulseaen

ENV Pulseaen
cxp, !•=> start
CZP» 1(= inc
Execution time*= 1.OOOOOOOOOE+00
Execstatus.a BUSY
STARTEXPCHECK:= NEVER
updatetime»= 7.000000000E+00
ntzp, l»=inc

(73) *9 STARTCHECK;=neY9r
CHECKOPTJ» NEVER

'741 #f9.0
(75) *s_
(76)EXECUTE : ENV Pulseden UPDATE
(77) SCHEDULE FSM Counter
(78) EXECUTE : FSM Counter START
(79) SCHEDULE ENV Terminal
(80) EXECUTE t ENV Terminal START

7.000000000E+00
START 7.000000000E+00
7,OOOOOOOOOE+00
START 9,000000000E+00

9,OOOOOOOOOE+00

TNOW:: 9.000000000E+00 ENV » Terminal
(81) *a ZPi;=9tart

errnum;=10,*«ZP or ZS or CHECKOPT is expected
(82) * s ZPfi;=start

zp or ZS number's i
(83) #e_

——— SCHEDULE —— ENV
EXECUTE ; ENV Pulseden
——— SCHEDULE —— ENV
EXECUTE : ENV Pulseaen

SCHEDULE FSM
EXECUTE : FSM Counter

Pulseaen
START

Pulseaen
UPDATE

Counter
START

(84)THE SYSTEM HAS BEEN STOPPED
(85)Do you want to save the current simulated system status?
(86)Y=Yes N=No ?N
(87) DONE

$ lo

START 9.000000000E+00
9.000000000E+00
UPDATE l.OOOOOOOOOE+01
l.OOOOOOOOOE+01
START l.OOOOOOOOOE+01
l.OOOOOOOOOE+01

Figure 4.4. (continued)

www.manaraa.com

213

In (10), we invoke the SAS command procedure to execute the

simulated system again. This time the SAS goes through the Data Input

process. Lines (11), (12) and (13) indicate that the SAN specification

of the component Terminal, Pulsegen and Counter are processed. In (14),

the SAS asks the user if the initialization process ia a New

Initialization. We type in 'Y' to indicate yes. In (15), the SAS

indicates that the system is stable. The SAS gives control to the

System Executive to execute the simulated system.

We initialized the simulation beginning time, tbeg to 1.0 and the

start expression check option of the ENV component Terminal is

everytlmechange; thus just before tnow=1.0 is advanced the start event

of Terminal is scheduled as shown in (16). In (17), we know that the SAS

is executing the start event of Terminal and in (18), SAS prompts a '//*

sign to indicate the SAS is in the terminal command mode. In (18), we

type in the command to print the status of all the system components.

The SAS in response prints the status of all the system components at

our terminal. In (19), we type in the command to save the status of all

the system components in the file, sysfile. In (20), we assign a pulsed

output to Terminal. Unfortunately the pulse value, 'strt', is not an

element of the pulsed output set. In (21), we type in the new pulse

value 'start'; this time it is accepted by the SAS. In (22), we type in

the command to exit from the terminal mode.

The 'start' pulse from the Terminal pulsed output is loaded into

the ENV component Pulsegen. A start event of Pulsegen is scheduled in

the event file as shown in (23). In (24), the start event of Pulsegen is

www.manaraa.com

214

executed. Since Pulsegen has an execution time equal 1.0, an update

event of Pulseaen is scheduled in the event file with event time equal

2.0 as shown in (25). At the end of execution of all the events in the

current event set with event time equal 1.0, a start event of Terminal

is scheduled into the event file as shown in (26). In (27), the start

event of Terminal Is executed to allow the user to examine the system

status before the simulation time is advanced. In (28), we type the

command to print the event file. The SAS prints the event file on the

terminal indicating that there is an update event of Pulsegen to be

executed at tnow=2.0. In (29), we exit from the terminal mode.

In (30), the SAS executes the update event of Pulsegen, which

generates a pulse at its pulsed output and loads the pulsed output into

its destination component, Counter. A start event of Counter is

scheduled in the event file as shown in (31). In (32), the start event

of Counter is executed. Since the execution time of Counter is zero,

the update event of Counter is executed immediately following the start

event of Counter. That is why there is no update event scheduled at the

end of the execution of the start event of Counter. The component

Terminal also has an execution time of zero, which implies no update event

needs to be scheduled at the end of the execution of the start event of

Terminal. In (33), a start event of Terminal is scheduled after all the

events in the current event set are executed. In (34), the SAS executes

the Terminal start event. In (35), we type a wrong command. In (36), we

type the command to print the status of all the system component again.

Notice that the current state of Counter has changed from '0' to '1' as

www.manaraa.com

215

shown in (37), which indicates that a 'inc' pulse has been loaded into

Counter from Pulsegen. In (38), we assign a new 'start' pulse to the

Terminal pulsed output. In (39), we type in the command to exit from the

terminal mode.

In (40), (41), (42), (43) and (44), the SAS repeats the same

process in (23), (24), (25), (26) and (27) to execute the Pulsegen. In

(45), we type the command to print the status of Pulsegen. Notice that a

new 'inc' pulse is generated at the Pulsegen pulsed output. In (46), we

type in the command to exit from the terminal mode. In (47), (48),

(49), (50) and (51), the SAS repeats the same process in (30), (31),

(32), (33) and (34) to load the pulse from Pulsegen into Counter and

execute the start and update event of Counter. In (52), we type the

command to print the status of Counter. Notice that the current

simulation time is 3.0, and we had sent two 'start' pulses into Pulsegen

which in turn had sent two 'inc' pulses into Counter. The current state

of Counter is '2' as shown in (53).

From (54) to (69), we repeat the steps of sending 'start' pulses

from the Terminal pulsed output, which are similar to the previous

steps. In (70), the SAS is executing the Terminal start event at

tnow=6.0. In (71), we type in the wrong component name. In (72), we type

the command to print the status of Pulsegen. In (73), we type the

command to change the start expression check option of Terminal to

never, which means the start expression of Terminal will never be

evaluated. In (74), we type the command to indicate a start event of

www.manaraa.com

216

Terminal needs to be scheduled at tnow°9.0. In (75), we type the command

to exit from the terminal mode.

Since the start expression check option of Terminal had been

changed to never, the start event of Terminal will not be scheduled at

the end of the execution of all the events in an event set. From (76)

to (80), the SAS executes the simulated system until tnow=9.0 and

schedules a start event of Terminal. In (81), we type the wrong command

again. In (82), we assign a new 'start' pulse to the Terminal pulsed

output. In (83), we type the command to exit from the terminal mode.

Since we initialize the simulation ending time, tend, equal 10.0,

the SAS executes the simulated system until all the events in the event

set with event time equal 10.0 and stops. SAS prints out a message 'THE

SYSTEM HAS BEEN STOPPED' as shown in (84). In (85) and (86), SAS asks

the user if the current simulated system status need to be saved. We

type in 'N' to indicate no. SAS then prints the message 'DONE' to

indicate the end of SAS execution.

The SAN model in the file simple.dat contains three performance

trace instances; these were saved in the file dataflle.dat, as listed in

Figure 4.5. The first trace is the regular variable history instance,

TraceCount. It traces the static output of Counter, which shows that

the Counter counts up to five 'Inc' pulses at time equal 5.0 and the

static output stays at '5' until time equal 10.0; the static output is

set to '0'. The second one is the conditional variable history

instance, TracePulse. It traces the occurrence of the 'reset' pulse at

the Pulsegen pulsed output. We notice the a 'reset' pulse occurs at

www.manaraa.com

217

VARHIST TraceCoiint
Counter.czs.1
0
1
2
3
14
5
5
5
5
0

VARHIST TracePiilse
Pulsegen.czp.1
reset

EXPHIST
FALSE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

T racestatus

: regular
Time
1.000000000E+00
2.000000000E+00
3.000000000E+00
4.000000000E+00
5.000000000E+00
6.000000000E+00
7.000000000E+00
8.000000000E+00
9.000000000E+00
1.OOOOOOOOOE+01

: conditional
Time
1 .OOOOOOOOOE+01

: regular
1.OOOOOOOOOE+00
2.000000000E+00
3.000000000E+00
tl.OOOOOOOOOE+OO
5.000000000E+00
6.000000000E+00
7.000000000E+00
8.000000000E+00
9.000000000E+00
1.OOOOOOOOOE+01

Figure 4.5. A listing of the datafile.dat file

www.manaraa.com

218

time=10.0, which in turn sets the static output of Counter to '0'. The

third one is the regular expression history instance, Tracestatus. The

expression is true only at time=2.0 otherwise it is false as shown in

Figure 4.5.

During the simulated system execution, we typed in the command to

save the status of all the system components at simulation time equal

1.0. The status of all the system components were saved in the file,

sysflle.dat as shown in Figure 4.6.

During the simulated system execution, the variables and expression

traces are each temporarily stored in a linked list as described in the

last chapter. The values in the linked list will be stored In the

datafile.dat file on the disk at, the end of the system execution. If

the computer system breaks down or the user types in the character

•CNTL-C' to Interrupt the current program execution during the

simulation execution time, the simulation execution will be stopped

immediately. If this happens, all the variable and expression traces of

the current simulation run will be lost.

As for the system component status, once we type a command in the

Terminal mode to save the system component status, the component

statuses are stored into the sysflle.dat in the disk Immediately.

Unless the disk information is lost, the system component status can

always be obtained from the sysflle.dat file.

www.manaraa.com

219

SYSTEM STATUS AT TNOW := 1.OOOOOOOOOE+00

FSM Counter
CS:= 0
oxp. 1:= -
C2S. 1:= 0
Execution Delay:= 0.OOOOOOOOOE+00
Execstatus:= IDLE

ENV Terminal
ozp. 1:= -
Execution time:= O.OOOOOOOOOE+00
Execstatus:= BUSY
STARTEXPCHECK:= EVERYTIMECHANGE
updatetime:= 1.OOOOOOOOOE+00
ntzp. 1:=-

ENV Pulsegen
cxp. 1:= -
czp, 1:= -
Execution tlme:= 1.OOOOOOOOOE+00
Execstatus:= IDLE
STARTEXPCHECK:= NEVER

Figure 4.6. A listing of the sysflle.dat file

www.manaraa.com

220

4. Execution of the SAN model executable image with execution errors

This sub-section illustrates the response of SAS to system

execution errors. The same SAN model as in the previous sub-section is

used. This time we will try to send a 'start' pulse to the component

Pulsegen while Pulsegen is busy. Figure 4.7 presents the listing of an

example run. In line (1), we invoke the SAS command procedure with the

RUN step to execute the SAN model executable image. SAS asks the user

if the initialization process is a New Initialization. In (2), we type

in 'Y' to indicate yes. The system is stable. In the beginning, SAS

schedules a start event of Terminal, which has a STARTEXPCHECK equal

everytimechange. In (3), SAS indicates to the user that a start event of

Terminal is being executed. In (4), we assign a 'start' pulse at the first

pulsed output of Terminal, which is connected to the first pulsed input

of Pulsgen. In (5), we type 'e' to exit from the terminal mode. The

start pulse is then loaded into the pulsed input of Pulsegen at tnow=1.0

and a start event of Pulsegen is scheduled at tnow=1.0 (6). In (7), the

start event of Pulsegen is executed and an update event of Pulsegen is

scheduled at tnow=2.0 (8). At the end of execution of all the events in

the event set with event set time=1.0, a start event of Terminal is

scheduled (9). In (10), the start event of Terminal is executed and we

type in the Terminal Mode Command Language to print out the current

event file content (11). In (12), we type 'e' to exit from the terminal

mode. SAS then advances the simulation time to 2.0 and executes the

update event of Pulsegen, which generates a pulsed output. The pulsed

output is loaded into its destination component. Counter, and a start

www.manaraa.com

(1)$ gsas counter«dat run
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

tempsm=Terminal
tempsm=Pulseaen
tempsm=Counter

(2) New Initialization ? Y=Yes or N=No* X
SYSTEM INITIALIZATION : CHECKING FOR UNSTABLE MACHINE
** SYSTEM IS STABLE **

SYSTEM HAS BEEN STARTED
SCHEDULE ENV Terminal START 1»000000000E+00

EXECUTE : ENV Terminal START 1.OOOOOOOOOE+00

(3) ENV { Terminal TNOW{= 1.OOOOOOOOOE+00
(4) * a Z P f I f «Start

zp or zs number•= 1
(5) #e
(6) —— SCHEDULE - ENV Pulseaen
(7) EXECUTE ; ENV Pulseaen START
(8) SCHEDULE ENV Pulseâen
(9) SCHEDULE ENV Terminal

(10) EXECUTE : ENV Terminal START

START l.OOOOOOOOOE+00
l.OOOOOOOOOE+00
UPDATE 2.000000000E+00
START l.OOOOOOOOOE+00
l.OOOOOOOOOE+00

ENV : Terminal TNOW*
Ml) «P eventfile

Eventset«time;= 1 « OOOOOOOOOE+00

l.OOOOOOOOOE-fOO

Eventset » count • =•

Eventset»time;= 2.000000000E+00
UPDATE ENV Pulseâen

(12) #e
EXECUTE : ENV Pulseden UPDATE

(13) SCHEDULE FSM Counter
(14) EXECUTE : FSM Counter START
(15) SCHEDULE - ENV Terminal

EXECUTE i ENV Terminal START

Eventset » count « =

2»000000000E+00
START 2.000000000E+00

2»00OOOOOOOE+OO
START 2.000000000E+00

2.000000000E+00

ENV S Terminal TNOW:= 2.000000000E+00
(16) *3 ZP. 1 (astart

ZP or zs number•= 1
#e_

(17) SCHEDULE ENV Pulseaen
(18) EXECUTE i ENV Pulseaen START
(19)-—- SCHEDULE —— ENV Pulseden
(20) SCHEDULE ENV Terminal
(21) EXECUTE : ENV Terminal START

START 2.000000000E+00
2.000000000E+00
UPDATE 3.000000000E+00
START 2.000000000E+00

2,0O0OOOOOOE+OO

ENV J Terminal
(22) #3 ZP.l:=start

ZP or zs number's

TNOW! 2.000000000E+00

Figure 4.7. Listing of an example run with system execution error

www.manaraa.com

222

•e
(23) hello execerr
(24)EXECUTION ERROR NUMBER)= 1015
(25)Message « the destination component is in pend or busy state
(26)CURRENT SIMULATION TIME : 2.000000000E+00
(27) CURRENT EVENT i START
(28)CURRENT MACHINE t Terminal
(29)DESTINATION MACHINE Î Pulseaen
(30)Pulsed input Number { 1

SYSTEM EXECUTION ERROR, CONTROL IS GIVEN TO UPM

ENV Î S$SYSTEM_MONITOR TNOW:= 2.OOOOOOOOOE+00
•p Terminal
ENV Terminal
czp* 1*= start
Execution time»» 0«000000000E+00
Execstatus;= IDLE
STARTEXPCHECK;= EVERYTIMECHANGE

(31) •p Pulseaen
ENV Pulseaen
cxp* 1«= start
czp« 1S= inc
Execution time«= 1«000000000E+00

(32) Execstatus'm BUSY
STARTEXPCHECK:» NEVER
updatetime;= 3«OOOOOOOOOE+00
ntzp. l*=inc

(33) *h.
SCHEDULE ENV Pulseaen START 2.000000000E+00

SYSTEM HALT IS TRUE
THE SYSTEM HAS BEEN STOPPED

(34) Do you want to save the current simulated system status?
(35)Y=Yes N=No ?iL
(36) DONE
(37)$

www.manaraa.com

223

event of Counter is scheduled (13). In (14), the start event of Counter is

executed. At the end of execution of all the events in the current event

set, the start event of Terminal is scheduled (15). When the start event

of Terminal is executed, a 'start' pulse is assigned to the pulsed output

of Terminal at tnow=2.0 (16). The pulsed output is loaded into the

pulsed input of Pulsegen. From (17) to (20), SAS repeats the same process

in (6) to (9) to execute the system components at tnow=2.0. At the end

of execution of all events in the current event set, the start event of

Terminal is also scheduled and executed (20) and (21). In (22), we assign

another start pulse to the pulsed output of Terminal. After we type 'e'

to exit from the terminal mode, the pulsed output is loaded into its

destination component. At this point, SAS detects an execution error.

SAS prints out the error message on the terminal as shown in (23) to

(30). From the error message we notice that Terminal pulses out a start

pulse to the first pulsed input of Pulsegen, while Pulsegen is busy. SAS

then gives the control to the System-Monitor to allow the user to examine

the current system status. In (31), we type in the command to point out

the status of Pulsegen. The execution status of Pulsegen is busy (32).

In (33), we type 'h' to halt the simulated system execution. In (34), SAS

asks the user if he wants to save the current simulated system status.

In (35), we type 'N' to indicate no. In (36), SAS prints out 'DONE' to

indicate the end of SAS execution and returns to the VAX command mode

indicated by the '$' (37).

www.manaraa.com

224

5. Demonstration of the Restart Initialization process

The Restart Initialization process allows users to continue the

execution of a SAN model simulation from the state where the simulation

last stopped. This sub-section Illustrates the Restart Initialisation

process using the simple SAN model In the previous sub-section. Figure

4.8 presents the listing of an example run. This example demonstrates

that after having saved the total system status at the end of a

simulation run, the simulation can be re-lnltlallzed to the same state

where the simulation last stopped and continued.

In line (1), we Invoke the SAS command procedure with the RUN step to

execute the SAN model executable image. SAS then asks the user if the

initialization process is a New Initialization. In (2), we type in 'Y' to

indicate yes, the system is stable. In the beginning SAS schedules a

start event of Terminal (which has a STARTEXPCHECK equal

everytlmechange). The steps from line (1) to line (21) are similar to

those in the previous example (Figure 4.7). Readers may refer to the

previous sub-section to understand the above steps.

At the end of execution of all the events in the event set with

event set time = 2.0, a start event of Terminal is scheduled (20). In

(21), the start event of Terminal is executed and we type in the command

to change the check option of the start expression of Terminal to

everyevent (22). This is done so that we can examine the system status

after the execution of each event. In (23), we type 'e' to exit from the

terminal mode. The simulator advances to tnow=3.0 and executes the

update event of Pulsegen, which in turn schedules a start event of

www.manaraa.com

225

(1) $ Bsas sitTiple.dat run
Previous logical name assianment replaced
tetriPsm=Termin3l
temP5m=Pulseaen
temPsm=Counter

(2) New Initialization T Y=Yes or N=No, X
SYSTEM INITIALIZATION Î CHECKING FOR UNSTABLE MACHINE
** SYSTEM IS STABLE **

SYSTEM HAS BEEN STARTED
SCHEDULE ENV Terminal START 1.OOOOOOOOOE+00

EXECUTE : ENV Terminal START 1.OOOOOOOOOE+00

(3)ENV : Terminal TNOW;= 1.OOOOOOOOOE+00
(4) #a ZP« 1 :=start

zp or zs number»= 1
(5)I*G
(6).---- SCHEDULE —— ENV Pulseaen
(7)EXECUTE : ENV Pulseaen START
(8) SCHEDULE ENV Pulseaen
0)L SCHEDULE ENV Terminal

(10) EXECUTE J ENV Terminal START

START l.OOOOOOOOOE+00
i»oooooooooE+oo
UPDATE 2.000000000E+00

START 1.OOOOOOOOOE+00
l.OOOOOOOOOE+00

(11) ENV ; Terminal TNOW{= 1.OOOOOOOOOE+00
(12)#a

EXECUTE : ENV Pulseden UPDATE
(13) — SCHEDULE —— FSM Counter
(14).EXECUTE : FSM Counter START
(15) 1 SCHEDULE ENV Terminal

EXECUTE : ENV Terminal START

2.000000000E+00
START 2.000000000E+00
2.000000000E+00
START 2.000000000E+00

2«O0000O00OE+OO

ENV ; Terminal TN0W:= 2«oooooooooE+oo
(16) #a ZP,l*=start

ZP or zs number(= 1
(17)%

-—- SCHEDULE —— ENV Pulseâen
(18)EXECUTE : ENV Pulseaen START
(19) SCHEDULE ENV Pulseaen
(20) SCHEDULE ENV Terminal
(21)iEXECUTE : ENV Terminal START

START 2«000000000E+00
2.000000000E+00
UPDATE 3.000000000E+00
START 2.000000000E+00

2,000000000E+00

(22) ENV : Terminal TNOW:= 2.000000000E+00
•.3 STARTCHECK«=everuevent

.CHECKOPT t= EVERYEVENT'
(23)*_e. •
(24)EXECUTE : ENV Pulseaen UPDATE
(25) SCHEDULE FSM Counter
(26) SCHEDULE ENV Terminal
(27)EXECUTE : ENV Terminal START

3.000000000E+00
START 3»O00000000E+OO
START 3.000000000E+00

3«O00OOOO00E+OO

Figure 4.8. Example run to demonstrate the Restart Initialization process

www.manaraa.com

226

ENV î Terminal TNOW;= 3,0000000002+00
(28) #p all

SYSTEM STATUS AT TNOW := 3.000000000E+00

FSM Counter
(29)CS{= 1

(30) cxp « 1 « = inc
CZS, 1}= 1
Execution Delaa*= 0»000000000E+00

(31)Execst3tus*= PEND

ENV Terminal
czp, 1*- -
Execution time«= 0«000000000E+00

(32)Execstatus» = BUSY
STARTEXPCHECK:= EVERYEVENT
updatetime{= 3»OOO00O0OOE+OO

(33),ntzp« 1«=-

ENV Pulspaen
CXP« 1•= -
CZP, 11= inc
Execution time*= 1»000000000E+00

(34)Execstatus»= IDLE
STARTEXPCHECK:= NEVER

(35) #p eventfile
Eventset,time{= 3 » OOOOOOOOOE+00 Eventset «count Î =

(36)
(37)

START
3,0

FSM Counter

(38) •il.
SYSTEM HALT IS TRUE
THE SYSTEM HAS BEEN STOPPED
Do you want to save the current

(39)Y=Yes N=No ?X
(40) DONE
(41) $ Osas simple,dat run

Previous logical name assignment
Previous logical name assignment
tempsm=Termirial
tempsm=Pulseaen
tempsm=Counter

(42) New Initialization ? Y=Yes or N=No*
SCHEDULE FSM Counter

SYSTEM HAS BEEN STARTED
(43) SCHEDULE ENV Terminal
(44)EXECUTE : ENV Terminal ' START

simulated system status?

replaced
replaced

jtL
START 3»000000000E+00

START 3,000000000E+00
3,0000000005+00

ENV } Terminal TNOW:= 3.000000000E+00
(45)$p all

SYSTEM STATUS AT TNOW %= 3,000000000E+00

Figure 4.8. (continued)

www.manaraa.com

227

FSM Counter
CS:= 1
cxp» 1{= inc
c z s , 1 J = 1
Execution Iielaa{= O.OOOOOOOOOE+00
Execstatus;= PEND

ENV Terminal
CZP* 1J= -
Execution time}» O.OOOOOOOOOE+00
Execstatus*= BUSY
STARTEXPCHECK;= EVERYEVENT
UPd3tetime»= 3«000000000E+00
ntzp* 1!=-

ENV Pulseaen
CXP « i;= -
czp« 1:= inc
Execution time*= l«000000000E+00
Execstatus«= IDLE
STARTEXPCHECK:= NEVER

(46) #p eventfile
Eventset•t ime}= 3 « OOOOOOOOOE+00

START FSM Counter
(47) •£
(48)EXECUTE : FSM Counter START
(49)——- SCHEDULE - ENV Terminal
(50) EXECUTE : ENV Terminal START

Eventset» count i =

3.000000000E+00
START 3.000000000E+00

3.000000000E+00

ENV t Terminal TNOW:= 3.000000000E+00
(51) #p all

SYSTEM STATUS AT TNOW {= 3.000000000E+00

FSM Counter
CS:= 2
CXP* 1»= -
CZS» 15= 2
Execution Delaa»» O.OOOOOOOOOE+00
ExecstatusJ= IDLE

ENV Terminal
CZP» 1;= -
Execution time5» O.OOOOOOOOOE+00
Execstatus*= BUSY
STARTEXPCHECK:= EVERYEVENT
updatetime*= 3«OO0OO0OOOE+OO
ntzp, H-~

ENV Pulseaen
cxp* -

Figure 4.8. (continued)

www.manaraa.com

228

csp» 1;= inc
Execution timeî= 1.OOOOOOOOOE+00
Execstatusi= IDLE
STARTEXPCHECK:= NEVER

eventfile
Eventset»time«= 3«OOOOOOOOOE+00 Eventset»count 1= 0

(52) th.
SYSTEM HALT IS TRUE
THE SYSTEM HAS BEEN STOPPED
Do you want to save the current simulated system status?
Y=Yes N=No ?N
DONE

Figure 4.8. (continued)

www.manaraa.com

229

Counter (25). In (26), the simulator schedules a start event of Terminal

and executes the start event (27). In (28), we type in the command to

print the status of all the components. We see that the current state of

Counter is '1' (29), and an 'inc' pulse arrives at Counter's pulsed input

(30), and Counter is Pending (31). Terminal is Busy (32) and the update

record shows that no new pulsed output value is assigned to Terminal

(33). Pulsegen is Idle (34). In (35), we type in the command to print

the event file. The event file shows that a start event of Counter is

pending to be executed at tnow = 3.0 (36). In (37), we type the command

to schedule a start event of Terminal at tnow = 3.0 just before the

system halt command is typed (38). This is done so that when the

simulated system is re-initialized SAS will first execute the start event

of Terminal and allow users to examine the system status before the

simulation run continues. In (39), SAS asks if the current simulated

system status is to be saved. We type in 'Y' to indicate yes (40). The

current simulated system status is saved in the sysfile.dat file. The

current simulation run is stopped. In (41), we invoke the SAS command

procedure again. SAS asks the user if the initialization process is a

New Initialization. In (42), we type in 'N' to indicate that it is not a

New Initialization (which implies Restart Initialization). The Restart

Initialization process is invoked to reload the previous system status

from the sysfile.dat file. Since a start event of Terminal was scheduled

at tnow = 3.0 in the previous run, a start event of Terminal is scheduled

and executed at tnow = 3.0 (44). In (45), we type the command to print

the simulated system status. The system status is exactly the same as

www.manaraa.com

230

the system status when the simulation run last stopped. In (46), we type

the command to print the event file. The event file is exactly the event

file which the system had when the last simulation run was terminated.

In (47), we type 'e' to exit from the terminal mode. The system execution

is then continued.

The start event of Counter is executed (48). At the end of the

execution of the start event of Counter, a start event of Terminal is

scheduled (49) and executed (30). In (51), we examine the system status

to check if the system execution proceeds properly or not. The current

state of Counter changes from '1' to '2' due to the arrival of a second

'inc' pulse. The execution status of both Counter and Pulsegen are Idle,

and that of Terminal is Busy. The system status shows that the simulated

system continues to execute properly after the Restart Initialization

process. In (52), we stop the system execution.

C. Start-Stop Link Simulation

This section illustrates the use of six of the nine kinds of

components (all except CFP, CPS, and DELS) of State Architecture

Notation in simulating a Start-Stop link [Piatkowski 1981]. It also

demonstrates the use of procedure and list options in representing the

FNS, FOUTP, and POUTS functions, the use of terminal and procedure

options in the ENV FUNCTION specification, the use of different kinds of

variable history trace specifications, and how to create a model

subsystem to test a protocol. The Start-Stop link simulation consists

www.manaraa.com

231

of the Start-Stop model as suggested by [Piatkowski 1981] and a test

controller subsystem Interconnected with the Start-Stop model to provide

the test bed for the start-stop protocol. A block diagram of the Start-

Stop link simulation is shown in Figure 4.9

1. Start-Stop model

The Start-Stop link without the test controller is a data

communication link supporting a simplex (unidirectional) connection

between a sender and a receiver in which a data stream of eight-bit

blocks (bytes) is transmitted via the well-known start-stop protocol.

The sender of the start-stop protocol basically takes the eight-bit byte

and transmits it bit-serial by adding a start bit at the beginning of

the transmission and two stop bits at the end. The receiver of the

start-stop protocol strips off the start and two stop bits, assembles

the eight-bit block into a byte and presents the byte to the next higher

level.

Figure 4.10 presents the SAN model of the Start-Stop link

simulation. The sender of the Start-Stop link is built-up from eleven

basic components; Sendmgr (FSM), Sendclk (CLK), Sendbit (FSM), and an

eight bit shift register built up of eight one-bit shift registers,

Sendsrl, Sendsr2, ——, SendsrS (FSM). The sender connects to the

receiver via a static delay (DELS) named Medium. The receiver is built-

up from twelve basic components: Rcvdet (DER), Rcvmar (FSM), Rcvclkl

(CLK), Rcvclk2 (CLK), and an eight bit shift register built up of eight

ripple connected one-bit shift registers, Rcvsrl, Rcvsr2, , RcvsrS

www.manaraa.com

Tësie*- Contre! |tir

ZS8

< ®

QIC)

xp.l XS.S K.I XS.I

as.1 XS.I

ZBX
IQ>) V(f i oj(s>

y.t XP2 epq

OJ

www.manaraa.com

imcohmect»

&

M Wte. •bjte

ZP»

«M

Tester
(ENV)

xpi

*cs>

clwq>)

2S.I
Rcvuser
CENV)

Hpi
Xgl % ̂

*cpj

Î35̂
Rcwdet

*3.1 CïER) ÏPI Kf(f) xp.l

xs.l

fEi ££i

r>

Rcvmor
tpsrti

m

ip+

Uatcut
tp X

«m t f i
Kevclki
CeLfc)

.b,t "
»rJ

m.

*?l «pi
Revclkz
CcU)

kweout
CP)

càarcp)

WCSJ

qn w
gnsrs
asoL

O.ICSJ
zs,l

4»' 4"

^2

t? *'
cp)

o.lC)
2S.I

:fJ 2JU
Bcvsri
(FSM1

Û.ICS)

q.3 ffïsri

Figure 4.9. Block diagram of the Start—Stop link and Test Controller

www.manaraa.com

234

{start-stop Link Model July 20, 1982j

ENV Senduser : Inter laced
ZP.1 TO Sendmgr.XP,1,Sendconverter.XP.1 : char
ZS.1 TO Sendmgr.XS.1,Sendconverter.XS.1 ; 0,1;
ZS.2 TO Sendmgr.XS.2,Sendconverter.XS.2 : 0,1;
ZS.3 TO Sendmgr.XS.3,Sendconverter.XS.3 : 0,1;
ZS.4 TO Sendmgr.XS.4,Sendconverter.XS.4 : 0,1;
ZS.5 TO Sendmgr.XS.5,Sendconverter.XS.5 : 0,1;
ZS.6 TO Sendmgr.XS.6,Sendconverter.XS.6 : 0,1;
ZS.7 TO Sendmgr.XS.7,Sendconverter.XS.7 : 0,1;
ZS.8 TO Sendmgr.XS.8,Sendconverter.XS.8 : 0,1;

FUNCTION: terminal;
defzsini t : 0,1,0,1,0,1,0,1;
deftexec! 0.0;
STARTEXP : true;
STARTEXPCHECK : everytImechange;

END;

ENV Sendconverter : inter laced
XP. 1 FROM Senduser.ZP. 1 : char;
XS.1 FROM Senduser.ZS.1 i 0,1;
XS.2 FROM Senduser.ZS.2 : 0,1;
XS.3 FROM Senduser.ZS.3 : 0,1;
XS.U FROM Senduser.ZS.t) ; 0,1;
XS.5 FROM Senduser.ZS.5 : 0,1;
XS.6 FROM Senduser.ZS.6 : 0,1;
XS.7 FROM Senduser.ZS.7 : 0,1;
XS.8 FROM Senduser.ZS.8 : 0,1;
XS.9 FROM Sendmgr.ZS.1 : idle,Busy;
ZP.1 TO Sendque.XP,1 : *;

FUNCTION : procedure

Procedure Sendconverterproc;
beg I n

with env[U$Sendconverter j ,updatesta te do
beg I n

i f (cxp[1]='chHr
(cxsc93='Idle

beg I n
ntzpC1][1]:=cxs[1]Cl] ;
ntzp[1]r2]:=cxs|:2j [1] ;
ntzp[1j [3]:=cxs[3]C1];
ntzp[1]C4]:=cxs[4]C1];
ntzpt l j [5] :=cxs[5][1j ;
ntzpcl] t6j f :=cxsc6iC13;
ntzp[1][7]:=cxs[7JC1:;
ntzpcl] [8]:=cxs[8][1];

end
e I se

ntzp[1]:=nulI ;
end;

end; lend of Sendconverterproc!
END;

deftexec'.0.0;
muI pu Isecheck : false;
STARTEXP:true;
STARTEXPCHECK:never;

END;

Figure 4.10. The Start-Stop link SAN model

www.manaraa.com

235

ENV Rcvuser ; inter laced
XP. 1 FROM Rcvmgr.ZP.t cha r
XS. 1 FROM Rovsrl .ZS.1 0,1;
XS.2 FROM Rcvsr2.ZS.2 0,1;
XS.3 FROM RcvsrS.ZS.3 0,1;
XS.4 FROM RcvsrH.ZS.i* 0,1;
XS.5 FROM RcvsrS.ZS.5 0,1;
XS.6 FROM Rcvsr6.ZS.6 0,1;
XS.7 FROM RcvsrT.ZS.T 0,1;
XS.8 FROM RcvsrS.ZS.S 0,1;
ZP.1 TO Tester.XP. 1 : char;
ZS.1 TO Tester.XS.1 : *;

FUNCTION : procedure

Procedure Rcvuserproc;
begin

with env[U$Rovuser],updatestate do
beg I n

I f cxp[,1]='char ' thon
beg I n

ntzpL1]:='char ' ;
ntzscl3[1]:=cxst.1][1] ;
ntzs[1]r2]:=cxs[2]r1];
ntzsci]i:3]:=cxs[3]cl3;
ntzsc1]C4]:=cxs[4JC1];
ntzst l] [5]:=cxsc5] [11;
ntzs[1][6]:=cxs[6 j r i3 ;
ntzscl j n7J:=cxsE7Ji: i 3;
ntzsCU C83:=cxsC8 ITU;

end;
end;

end; 1 end of Rcvuserproc 5
END; ' -•

defzsini t :00000000;
deftexec:0.0;
mulpulsecheck : false;
STARTEXPitrue;
STARTEXPCHECK:never;

END;

Figure 4.10. (continued)

www.manaraa.com

236

ENV Tester : inter laced
KP.I FROM Rcvuser.ZP.1 : char;
XP.2 FROM Sendqi ie.ZP.I : *;
XS.1 FROM Rovuser.ZS.1 : *;
ZP.1 UNCONNECTED : Goodbyte,Badbyte;
ZP.2 TO Sendqi ie.XP.2 : deq;

FUNCTION : procedure

Procedure Testerproc;
var

a : array[1.. ' (l or str ing;

beg in
a|[1]: = 'Goodbyte
a[2]:='Badbyte
ac3]:='char
ac4]:='deq
with envru$Tester3,updatestate do
beg in

I f cxpC1]=aC3] then ntzpC2]:=a[(|]
e I se
i f cxp1I2]<>nul I then
beg 1 n

I f oxp[2]=oxs[1] then ntzp[1]:=a[1^
else ntzp[1]:=a[2];

end;
end; (end wlthj

end; ^end Testerproc)

END;

deftexec:0.0;
STARTEXP : true;
STARTEXPCHECK : never;

END;

QUE Sendque : Inter laced
XP.1 FROM Sendconverter.ZP.1 : *;
XP.2 FROM Tester.ZP.2: deq;
ZP.1 TO Tester.XP.2 : *;
ZS.1 UNCONNECTED : open,closedempty,cIosednotempty;
deftenq : 0.0;
deftdeq : 0.0;

END;

Figure 4.10. (continued)

www.manaraa.com

237

FSM Sending r : inter laced
S:I die,Start ,1,2,3,U,5,6,7,8,Stop!,Stop2;
defs In11:Idle;
XP.1 FROM Senduser.ZP.1 : char;
XP.2 FROM Sonde Ik.ZP.1 : t imeouti
XS.1 FROM Senduser.ZS.1 :0,1;
XS.2 FROM Senduser.ZS.2 :0,1;
XS.3 FROM Senduser.ZS.3 :0,1;
XS.t l FROM Senduser.ZS.4 :0,1;
XS.5 FROM Senduser.ZS.5 :0,1;
XS.6 FROM Senduser.ZS.6 I 0,1 ;
XS.7 FROM Senduser.ZS.7 :0.1;
XS.8 FROM Senduser.ZS.8 ;0,1;
XS.9 FROM Sendsrl .ZS.I : 0,1;
ZP.1 TO Sendolk.XP.1 : start ;
ZP.2 TO SendsrI.XP.1 : 0,1;
ZP.3 TO Sendsr2.XP.1 : 0,1 ;
ZP.4 TO Sendsr3.XP.1 : 0,1;
ZP.5 TO SendsrI.XP.1 : 0,1;
ZP.6 TO SendsrS.XP.1 : 0,1;
ZP.7 TO Sendsrô.XP.1 : 0,1 ;
ZP.8 TO Sendsr7.XP.1 : 0,1;
ZP.9 TO SendsrS.XP.1 : 0,1;
ZP.10 TO Sendsri .XP.2: sh;
ZP.11 TO Sendblt .XP.1 :0,1 ;
ZS.1 TO Sendconverter.XS.9 : Idle,Busy;

FNS : I 1st
IdIe/cha r ,- /* , * ,*,*,*,*,*,*, *=>Sta r t ;
Start /- , t imeout/*, •*,*, ' • ,* ,*,*,*,*=>1 ;
Sta r t /cha r ,- /* ,*, * ,*,*,*,*, *,*=>Sta r t ;
1 / - , t i m e o u t / * , * = > 2 ;
1/char,- /*,»,*,*,*.«,*.*,*=>1;
2/- , t imeout/*,*,*,*,*,*,*,*,*=>3;
2 / c h a r , * = > 2 ;
3/- , 11 meout/*,*,*, * ,* ,*,*,*, *=>'4;
3/cha r ,- /* ,*,*,*,*,*,*,*,*=>3 ;
i»/-, t imeout/*,*,*,*,*,*, *,*,*=>5:
4/cha r ,- /* ,*,*,*,*,*,*,*, *=>i4;
5/- , t imeout/*,*,*,*,*,*,*,*,*=>6;
5/char,- /*,»,*,*,*,*,*,*,*=>5;
6/-, t imeout/*,*,*,*,*,*,*,*,*=>7;
6/char,- /*,*,*,*,»,*,*,*,*=>6;
7/- , t imeout/*,*,*,*,*,*,*,*,*=>8;
7/char,- /*,*,*,*,*,*,*,*,*=>7;
8/- , t imeout/*,*,*,*,*,*,*,*,*=>Stop1;
8/ohar,- /*,*,*,*,*,*,*,*,*=>8;
Stopi/- , t imeout/*,*,*,*,*,*,*,*,*=>Stop2;
Stopl/cha r ,- /* ,*,*,*,*,*,*,*,*=>Stop1;
Stop2/-, t imeout/*,*,*,*,*,*,*,*,*=>Idle;
Stop2/cha r ,- /* ,*,*,*,*,*,*,*,*=>Stop2;

END;

FOUTP : l ist
Id Ie/cha r ,- /* ,*,*,*,*,*,*,*,*=>sta rt ,cxs.1,cxs.2,cxs.3,cxs.4,cxs.

cxs.6,cxs.7,cxs.8,-,0;
Sta r t / - , t imeout/*,*,*,*,*,*,*,*,*=>sta r t ,sh,cxs.9
1/-, t imeout/*,*,*,*,*,*,*,*,*=>start ,- ,- ,- ,- ,- ,- ,- ,- ,sh,cxs.9;
2 / - , t i m e o u t / * , * , * , * , * , * , * , * , * = > s t a r t , s h , c x s . 9 ;

Figure 4.10. (continued)

www.manaraa.com

238

3/-, t imeout/*,*,*=>sta r t ,sh,cxs.9
U/-, t Imeout/*,*,*=>sta rt ,- ,- ,- ,- ,- ,- ,- ,- ,sh,cxs.9
5 / - , t i m e o u t / * , * , * = > s t a r t , - , - , s h . c x s . 9
6 / - , t i m e o u t / * , * , * , * , * , * , * , * , * = > s t a r t , s h , c x s . 9
7 / - , t i m e o u t / * , * , * , * , * , * , * , * , * = > s t a r t , s h , c x s . 9
8 / - , t i m e o u t / * , * , * , * , * , * , * , * , * = > 5 t a r t , 1 ;
Stop 1/- , t imeout/*,*,*,*,*,*,*,*,*=>8ta r t ,1 ;

END;

FOUTS : I ist
Idle => Idle;
* => Busy;

END;
deftexec:0.0;

END;

FSM Sendbit : inter laced
8: l ,h;
defsini t ih;
XP.1 FROM Sendmgr.ZP.11 : 0,1;
ZS. 1 TO Medium.XS. 1 : I,hi ;

FNS : I 1st
* /0=>l;
*/1=>h;

END;

FOUTS : I 1st
l = > l ;
h=>h;

END;

deftexec:0.0;
END;

FSM Sendsri : inter laced
S:0,1;
defsinl t :0;
XP.1 FROM Sendmgr.ZP.2 : 0,1 ;
XP.2 FROM Sendmgr.ZP.10 : sh;
XP.3 FROM sendsr2.ZP.2 : 0,1;
ZP.1 TO Sendsr2.XP.2 : sh;
ZP.2 UNCONNECTED : 0,1;
ZS.1 TO Sendmgr.XS.9 : 0,1;

FNS : I 1st
*/0,-,-/ =>0!
* / i . - , - / = > 1 ;
*/-»-.0/ =>0;
* / - , - , 1 / = > i ;

END;
FOUTP ; I 1st

* /- ,sh,-/ =>sh,cs:
END;
FOUTS : procedure

ntzs.1:=nts;
END;
deftexec:0.0;

END;

Figure 4.10. (continued)

www.manaraa.com

FSM SendsrS : Inter lncod
S;0,1;
defslnl t :0;
XP.1 FROM Sendmgr.ZP.3 : 0,1
XP.2 FROM Sendsrl .ZP.1 ; sh
XP.3 FROM Sendsr3.ZP.2 : 0,1
ZP.1 TO Sendsr3.XP.2 ; sh;
ZP.2 TO sendsrl .XP.S : 0,1;
ZS.I UNCONNECTED : 0,1;
FNS : I 1st
*/0,-,-/ =>0;
*/!,-,-/ =>1;

0/ =>0!
*/-,-,!/ =>i;

END;
FOUTP : I 1st

* /- ,sh,-/ =>sh,cs;
END;
FOUTS : procedure

ntzs.1:=nts;
END;

deftexec:0.0;
END;

FSM Sendsr3 : Inter laced
S:0,1;
defsIn 11:0;
XP. 1 FROM Sendmgr.ZP.1) : 0,1
XP.2 FROM Sendsr2.ZP.1 : sh
XP.3 FROM Sendsr4.ZP.2 : 0,1
ZP.1 TO Sendsr4.XP.2 : sh;
ZP.2 TO Sendsr2.XP.3 : 0,1;
ZS.I UNCONNECTED : 0,1;
FNS : I 1st
* / 0 , = > 0 ;
* / 1 , - , - / = > 1 ;

0/ =>0;
V =>1;

END;
FOUTP : I 1st

* /- ,sh,-/ =>sh,cs;
END;
FOUTS : procedure

ntzs.1;=nts;
END;

deftexec:0.0;
END;

Figure 4.10. (continued)

www.manaraa.com

FSM Sendsrl4 : inter lnced
S:0,1;
dofs i n11:0;
XP.1 FROM Sendmgr.ZP.5 : 0,1
XP.2 FROM Sendsr3.ZP.1 : sh
XP.3 FROM Sendsr5.ZP.2 : 0,1
ZP.1 TO Sendsr5.XP.2 : sh;
ZP.2 TO Sendsr3.XP.3 : 0,1;
ZS.1 UNCONNECTED : 0,1;
FNS : I 1st
*/0,-,-/ =>0;
VI.-,-/ =>I;

0/ =>0;
1/ =>l!

END;
FOUTP : I 1st

* /- ,sh,-/ =>sh,cs;
END;
FOUTS : procedure

ntzs.1:=nts;
END;

deftexeciO.O;
END;

FSM SendsrS : Inter laced
S:0,1;
defsIn 11:0;
XP.1 FROM Sendingr.ZP.6 : 0,1
XP.2 FROM SendsrU.ZP.1 : sh
XP.3 FROM Sendsr6.ZP.2 : 0,1
ZP.1 TO Sendsr5.XP.2 : sh;
ZP.2 TO Sendsri4,XP. 3 : 0,1;
ZS.1 UNCONNECTED : 0,1;
FNS : I 1st
*/0,-,-/ =>0;
*/1,-,-/ =>i;
*/-,-,0/ =>0;
* / - , - , ! / = > 1 ;

END;
FOUTP : I 1st

* /- ,sh,-/ =>sh,cs;
END;
FOUTS : procedure

ntzs.1!=nts;
END;
deftexec:0.0;

END;

Figure 4.10. (continued)

www.manaraa.com

241

FSM Sendsrô : inter laced
S:0,1;
dors in i t :0;
XP.1 FROM Sendtngr.ZP.7 : 0,1;
XP.2 FROM SondsrS.ZP.I : sh;
XP.3 FROM Sendsr7.ZP.2 : 0,1;
ZP.1 TO Sondsr7.XP.2 : si i ;
ZP.2 TO Sendsr5.XP.3 : 0,1;
ZS.1 UNCONNECTED : 0,1;
FNS ; I ist
*/0,-,-/ =>0;
*/i.-,-/ =>i:

0/ =>0;
1 / =>1 ;

END;
FOUTP : I i St

*/- ,sh,-/ =>sh,cs;
END;
FOUTS : procedure

ntzs.1:=nts;
END;

deftexec:0.0;
END;

FSM Sendsr? : inter laced
8 :0 ,1 ;
defs ini t :0;
XP.1 FROM Sendmgr.ZP.8 : 0,1;
XP.2 FROM Sendsrô.ZP. 1 : sl i ;
XP.3 FROM Sendsrô.ZP.2 : 0,1;
ZP.1 TO Sendsr8.XP.2 : sh;
ZP.2 TO Sendsrô.XP.3 : 0,1;
ZS.1 UNCONNECTED : 0,1;
FNS ; I 1st
*/0,-,-/ =>0;

=>1;
0/ =>0;
1/ =>1;

END;
FOUTP : I 1st

V-,sh,-/ =>sh,cs:
END;
FOUTS : procedure

ntzs.1:=nts:
END;

deftexec;0.0;
END;

Figure 4.10. (continued)

www.manaraa.com

242

FSM SendsrS : inter laced
S:0,1;
defslnl t :0;
XP.1 FROM Sendmgr.ZP.9 : 0,1;
XP.2 FROM Sendsr7.ZP.1 : sh;
XP.3 UNCONNECTED ; 0,1;
ZP.1 UNCONNECTED : sh;
ZP.2 TO SendsrT.XP.3 : 0,1;
ZS.1 UNCONNECTED ; 0,1;
FNS : I 1st
*/0,-,-/ =>0;
• / I , - . - / = > 1 ;

0/ =>0;
1/ =>i;

END;
FOUTP : I ist

*/- ,sh,-/ =>sh,cs:
END;
FOUTS : procedure

ntzs.1:=nts;
END;

deftexec. '0.0;
END;

CLK Sendclk : inter laced
XP.1 FROM Sendmgr.ZP.1 : start ,reset;
ZP.1 TO Sendmgr.XP.2 : t imeout;
ZS.1 UNCONNECTED : reset,running,expired ;
deftclk:1.0;

END;

DELS Medium : inter laced
XS.1 FROM Sendbit .ZS.1 : l ,h;
ZS.1 TO Rcvmgr.XS.1,rcvdek.XS.1 : l ,h;
defzsini t : h ;
deftdel : 3.0;

END;

FSM Rcvmgr : inter laced
S; idle,start ,1,2,3,4,5,6,7,8;
defsIn i t : idle;
XP.1 FROM rcvdet.ZP. 1 : r , f ;
XP.2 FROM Rcvclkl .ZP.1 : t imeout;
XP.3 FROM Revelk2.ZP.1 : t imeout;
XS.1 FROM Medium.ZS.1 : l ,h;
ZP.1 TO Rcvclkl .XP.1 : start ;
ZP.2 TO Rcvclk2.XP.1 : start ;
ZP.3 TO RcvsrS.XP.I : 0,1;
ZP.4 TO Rcvuser.XP.1 :char;

FNS ; I 1st
id le/f ,- ,- /* => start ;
start /*, t imeout,- /* => 1;
1/*,- , t imeout/* => 2;
2/*,- , t imeout/* => 3;
3/*,- , t imeout/* => ' t ;
4/*,- ,t imeout/* => 5;
5/*,- , t imeout/* => 6;
6/*,- , t imeout/* => 7;
7/*,- , t imeout/* =>8;
8/*,- , t imeout/* =>idle;

END;

Figure 4.10. (continued)

www.manaraa.com

FOUTP : I 1st
Idle/f ,- ,- /* =>start ,
start /*, t imeout,- /h =>-,start ,1
start /*, t Imeout,- / I =>-,start ,0
1/*,- , t imeout/h =>-,start ,1,
1/*,- , t imeoLit / l =>-, sta r t , 0,
2/*,- , t imeout/h =>-, start , 1,- ;
2/*,- , t imeout/I =>-,start ,0,- ;
3/*,- , t imeout/h =>-,start ,1,- ;
3/*,- , t imeout/I =>-,start ,0,- ;
4/*,- , t imeout/h =>-,start ,1,- ;
'»/*.- , t imeout/1 =>-, start , 0, - ;
5/*,- , t imeout/h =>-,start ,1,
5/*,- , t imeout/I =>-,start ,0,- j
6/*,- , t imeout/h =>-,start ,1,- ;
6/*,- , t imeout/1 =>-,start ,0,- ;
7/*,- , t imeout/h =>-,start ,1,- ;
7/*,- , t imeout/I =>-,start ,0,- ;
8/*,- , t imeout/* => char;

END;
deftexeo : 0.0;

END;

FSM RovsrS : inter laced
S:0,1;
dofsini t iO;
KP.1 FROM Rcvragr.ZP.3 : 0,1;
ZP,1 TO Rcvsr7.XP.1 : 0,1;
ZS.1 TO Rcvuser.XS.8 : 0,1;

FNS : procedure
i f (cxp.1='0') then nts:='0' ;
I f (cxp.1='1') then nts:=' l ' ;

END;

FOUTP : procedure
I f (cxp.1<> ' - ') then

I f (os='0') then ntzp.1:=
else ntzp.1:='

END;

FOUTS : procedure
ntzs.1:=nts:

END;

deftexec:0.0;
END;

FSM Rcvsr7 : inter laced
S:0,1;
defsIn11:0 ;
XP.1 FROM Rcvsra.ZP.1 : 0,1 !
ZP.1 TO Rcvsr6.XP.l : 0,1;
ZS.1 TO Rcvuser.XS.7 : 0,1;

FNS : procedure
i f (cxp.1='0') then nts:='0' ;
i f (cxp.1='1') then nts:='1*;

END;

Figure 4.10. (continued)

www.manaraa.com

244

FOUTP ! procedure
i f (oxp,1<>,) then

I f (cs='o') then ntzp.1:= 0
e1 se ntzp.1:= 1 ' ;

END;

FOUTS : procedure
ntzs.1:=nts;

END;

deftexec:0.0;
END;

FSM Rcvsr6 : Inter laced
S:0,1;
dersini t :0;
XP.1 FROM Rcvsr7.ZP.1 : 0,1;
ZP.1 TO RcvsrS.XP.I : 0.1;
ZS.l TO Rcvuser.KS.6 ; 0,1;

FNS : procedure
i f (cxp.1='o') then nts:='0' ;
I f (oxp.1='1') then nts:=' l ' ;

END;

FOUTP : procedure
I f (cxp,1<>) then

i f (cs='0') then ntzp.1:='0'
eI se ntzp.1 : = '1 ' ;

END;

FOUTS : procedure
ntzs.1:=nts:

END;

deftexecîO.O:
END;

FSM Rcvsr5 : inter lnced
8:0,1:
defsIn11:0;
XP.1 FROM Rcvsre.ZP.1 : 0,1 ;
2P.1 TO Rcvsr4.XP.1 : 0,1;
ZS.1 TO Rovuser.XS.5 : 0,1;

FNS : procedure
i f (cxp.1='0') then nts:='o' ;
I f (cxp.1='1') then nts:=' l ' ;

END;

FOUTP : procedure
i f (cxp.1<>) then

i f (cs='0') then ntzp.1:='0'
eI se ntzp.1: = ' 1 ' ;

END;

FOUTS : procedure
ntzs.1:=nts;

END;

deftexec:0.0;
END;

Figure 4.10. (continued)

www.manaraa.com

FSM Rcvsr ' i : inter I need
S;0, l !
doCsifii 1:0;
XP.1 FROM RcvsrS.ZP.I : 0,1;
ZP.1 TO Rcvsr3.XP.1 : 0,1;
ZS. 1 TO Rcvi iser.XS.U : 0,1;

FNS : procedure
I f (cxp.1='0') then nts:='0'
i f (cxp.1='1') then nts:='1'

END;

FOUTP : procedure
i f (cxp.1<>) then

i f (cs='0') then ntzp.1
else ntzp.1

END;

FOUTS : procedure
ntzs.1:=nts;

END;

deftexec:0.0;
END;

FSM Rcvsr3 : inter laced
S:0,1;
defsini t :0;
XP. 1 FROM Rcvsri t .ZP. 1 : 0,1;
ZP. 1 TO Rcvsr2.XP.1 : 0,1;
ZS.1 TO Rcvuser.XS.3 : 0.1;

FNS : procedure
i f (cxp.1='0') then nts:='0'
i f (cxp.1='1') then nts:='1'

END;

FOUTP : procedure
I f (cxp.1<> ' - ') then

i f (cs='0') then ntzp.1
eI se ntzp.1

END;

FOUTS : procedure
ntzs.1 :=nts;

END;

deftexec:0.0;
END;

Figure 4.10. (continued)

www.manaraa.com

FSM RcvsrS : Inter laced
S:0,1;
defsinl f .O;
XP.1 FROM RcvsrS.ZP.1 : 0,1;
ZP. 1 TO Rcvsn .XP. 1 : 0,1 ;
ZS.1 TO Rcvuser.KS.2 ; 0.1;

FNS : procedure
i r (cxp.1='0') then ntsi='0'
i f (cxp.1=' l ') then nts:='1'

END;

FOUTP : procedure
I r (cxp.1<>) then

I f (cs='0') then ntzp.1
eI se ntzp.1

END;

FOUTS : procedure
ntzs.1:=nts;

END;

deftexec:0.0:
END;

FSM Rcvsri : inter laced
S:0,1;
defsinl f .O;
XP.1 FROM Rcvsr2.ZP.1 : 0,1;
ZP.1 UNCONNECTED: 0,1;
ZS.1 TO Rcvuser.XS.1 : 0,1;

FNS : procedure
i f (cxp.1='0') then nts:='o'
i f (cxp.1='1') then nts:='1'

END;

FOUTP : procedure
I f (cxp.1<>) then

i f (cs='0') then ntzp.1
el se ntzp.1

END;

FOUTS : procedure
ntzs.1:=ntsi

END;

deftexeciO.O;
END;

Figure 4.10. (continued)

www.manaraa.com

247

DER rcvdet : inter laced
XS.1 FROM Medium.ZS.1 ; l ,h;
2P.1 TO Rcvingr.XP.1 : r , f ;

END;

CLK Rcvcl l<1 : inter laced
XP.1 FROM Rcvmgr.ZP.I : start :
ZP.1 TO Rcvtngr.XP.2 : t imeout;
ZS.1 UNCONNECTED ; reset,running,exp1 red;
deftc I k; 1.5;

END;

CLK RcvclkS : inter laced
XP.1 FROM Rcvmgr.ZP.2 : start ;
ZP.1 TO Rcvingr.XP.3 : t imeout;
ZS.1 UNCONNECTED : reset,running,expired;
deftcIk:1.0;

END;

VARHI STORY TraoeMedI urn : regular
VARIABLES : Medium.cxs.1 ;
DTHISTORY : 1.0;
CHECKOPT : everyt lmechange;

END;

VARHI STORY TraceSendconverter : condit ional
VARIABLES ; Sendconverter.czp.1 ;
CONDITION ; Sendconverter.czp.1 <>
CHECKOPT : everyt lmechange;

END;

VARHI STORY TraceRcvuser : condit ional
VARIABLES : Rcvuser.czs.1 ;
CONDITION ! Rcvuser.czp.1<>'- ' ;
CHECKOPT : everyt lmechange;

END;

VARH I STORY I ' raceTeste r : condit ional
VARIABLES : Tester.czp.1 ;
CONDITION : Tester.czp.1<>'- ' ;
CHECKOPT : everyt lmechange;

END;

INIT
tbeg : 1.0;
tend : 150.0;
mulpulsecheck ; true;

END;

Figure 4.10. (continued)

www.manaraa.com

248

(FSM). The functions of the components in the sender and receiver of the

Start-Stop link have been explained by [Piatkowskl 1981]. Here we

highlight the use of component features in simulating the Start-Stop link

and its Test Controller.

Sendmgr, a finite-state machine (FSM), incorporates the serial

sending of the start bit, the eight-bit user data and two stop bits to

the receiver. Sendmgr has twelve different states as specified in the S

line of the Sendmgr specification. It has two pulsed inputs, XP.l and

XP.2, connected to Senduser.ZP.l and Sendclk.ZP.l, respectively. There

are nine static inputs with XS.l to XS.8 connected to the static outputs

of Senduser(ZS.l to ZS.8); the static input, XS.9, connects to the

static output of the shift register (Sendsrl.ZS.l). The first pulsed

output (ZP.l) connects to the pulsed input of Sendclk(XP.l). The next

eight pulsed outputs (ZP.2 to ZP.9) connect to the XP.l of Sendsrl,

Sendsr2, and SendsrS. respectively. The tenth pulsed output,

ZP.10, connects to Sendsrl.XP.2. The eleventh pulsed output, ZP.11,

connects to Sendbit.XP.l. The static output, ZS.l, connects to

Sendconverter .XS.9 of the test model to indicate whether Sendmgr is in

the Idle or Busy state. The list option of the FNS enumerates

possible state transitions based on the mapping of cs, xp's and xs's to

nts. Similarly, the list option of the FOUTP enumerates all possible

combinations of cs, xp's and xs's to map Into the array of next pulsed

outputs, ntzp's. The first line of the FOUTP list demonstrates the use

of current local static input variables, cxs.l, cxs.2 and so on, as the

value of the ntzp's. The list option of FOUTS enumerates the mappings

www.manaraa.com

249

of the current state into the current static output. The default

execution time is zero.

Further on in the specification of the shift registers in the

receiver of the Start-Stop link, the procedure option is used in FNS,

FOUTP and FOUTS. For example, RcvsrS (FSM), a one-bit shift register,

has a pulsed input, XP.l, connected to Rcvmgr.ZP.3, a pulsed output,

ZP.l, connected to Rcvsr7.XP.l, and a static output, zs.l, connected to

Rcwuser.XS.8. The FOUTP procedure indicates that if the current pulsed

input is '0', then the next state value, nts, is '0', else if the current

pulsed input is '1', then the next state value, nts, is 'I'. The FOUTP

and FOUTS are also specified via a local PASCAL procedure.

Sendclk a clock (CLK), will pulse out a timeout pulse to Sendmgr

1.0 time unit after the arrival of a start pulse to its pulsed input.

Sendclk has a pulsed input, XP.l, connected to Sendmgr.ZP.l, a pulsed

output, ZP.l, connected to Sendmgr.XP.2. The static output of Sendclk

is not connected. The clock period is 1.0 time unit.

Medium, a static delay (DELS), acts as a delay between the sender

and the receiver of the Start-Stop link. The static input, XS.l,

connects to the Sendbit.ZS.l; and the static output, ZS.l, connects to

both Rcvmgr.XS.l and Rcvdet.XS.l. The default initial static output

value of Medium is and its delay time is arbitrarily 3.0 time units.

Rcvdet. a derivative (DER), senses the change of the static output

of Medium from low (_1) to high (h^) or high (h) to low (]^) to pulse out a

rising (r) or falling (O pulse to Sendmgr respectively. Rcvdet has a

www.manaraa.com

250

static Input, XS.l, connected to Medlum.ZS.l and a pulsed output, ZP.l,

connected to Rcvmgr.XP.l.

2. Test controller

The test controller interfaces the user with the Start-Stop model

and automates much of the testing of the link. Figure 4.10 presents the

SAN specification of the Test Controller, which is built up from five

components: Senduser(ENV). Sendconverter(ENV). Sendque(QUE),

Rcvuser(ENV) and Tester (EN V). The Test controller makes it possible for

the user to send a stream of eight-bit bytes for transmission on the

link.

Since the sender accepts an eight-bit block (data) only if the

Sendmgr is in Idle state, the Sendconverter allows the data from the

Senduser to load into the FIFO queue, Sendque, only if the Sendmgr is in

Idle state. The Sendconverter also converts the eight static inputs of

the eight-bit byte into a pulsed output containing the eight-bit

information as a single string. In this case, one FIFO queue is needed

to save the eight bits of data; otherwise eight FIFO queues will be

needed. The pulsed output of Sendconverter is loaded into the FIFO

queue, Sendque. Sendque saves all the data sent out by Senduser; the data

will be used by the Tester to check if the data received by the Rcvuser

is good or bad.

Rcvuser latches the eight-bit byte from the eight-bit shift

register in the receiver and converts the eight-bit byte into a

single string. When Rcvuser receives data from the receiver of the

www.manaraa.com

251

Start-Stop link, It sends out a char pulse to the Tester, which in

return pulses out a deq pulse to Sendque for the oldest data in the

queue. The data from Sendque is compared with the data received by the

Rcvuser. If they are equal, Tester pulses out a goodbyte pulse;

else, it pulses out a badbyte pulse.

3. Performance traces

The Start-Stop link simulation model has four variable history

instances to trace the execution of the Start-Stop link. The first

trace, named TraceMedium, is a regular variable history instance. It

records the value of the static input of Medium at every 1.0 time unit

interval and only one sample is recorded just before the current

simulation time is advanced. The second trace is named

TraceSendconverter; it is a conditional variable history instance. The

pulsed output of Sendconverter is checked just before simulation time is

advanced. If a pulse appears at Sendconverter.czp.l, then the value of

the pulse and the current simulation time is recorded. Similarly, the

third and the fourth conditional variable history instances named

TraceRcvuser and TraceTester trace the pulse being received at Rcvuser

and the pulse generated by Tester, respectively.

Figure 4.11 presents the traces of the TraceSendconverter,

TraceRcvuser, and TraceTester instances. From the instance

TraceSendconverter, we notice that an eight-bit byte, *01010101', is

sent out from Senduser at tnow=1.0, '01010001' is sent out from Senduser

at tnow=13.0, and so on. From the instance TraceRcvuser we notice that

www.manaraa.com

252

an eight-bit byte, '01010101' is received by Rcvuser at tnow=13.5,

'01010001' is received by Rcvuser at tnow=25.5, and so on. From the

instance TraceTester, we notice that a good byte is received by the

Rcvuser at tnow=13.5, 25.5, 37.5 and so on. We also notice that there

is a 12.5 time unit delay before the Rcvuser received a byte sent from

the Senduser. The 12.5 time unit delay is the result of time needed to

send a start pulse, which takes 1.0 time unit; the eight-bit bytes takes

8.0 time units; the Medium has a delay of 3.0 time unit; and also the

0.5 time unit delay for the receiving clock to sample the middle of the

valid data.

Figure 4.12 presents the output of TraceMedium. It shows the value

of the static input of Medium at every unit time interval between the

simulation time period 1.0 to 150.0. From the trace, we can observe the

serial bit pattern generated by the Sendmgr. As indicated by the

instance TraceSendconverter an eight-bit byte '01010101' is sent out

from Senduser at tnow=1.0. From the output of TraceMedium, we notice

that a start bit, jL, is first sent out to the Medium at: tnow=1.0.

It is then followed by eight bits of data, '01010101', as denoted by the

value of the static input of Medium from tnow=2.0 to 9.0, which is 1^ ji 1^

li jL li. At the end of sending the eight-bit byte, two stop bits, li,

are sent out at tnow=10.0 and 11.0 as Indicated in Figure 4.11. The

static input of Medium stays at until tnow=13.0. At tnow=13.0, a new

eight-bit byte is sent out by Senduser as indicated by the output of

TraceSendconverter. And so on.

www.manaraa.com

253

VARHIST TraceSendconverter ; condit ional
Sendconverter.czp.1 T I tne
01010101 1.OOOOOOOOOE+00
01010001 1.300000000E+01
11011001 2.500000000E4 01
10010001 3.700000000E+01
00000001 U.900000000E+01
10001011 6.100000000E+01
10011111 7.300000000E+01
11010011 8.500000000E+01
11010011 9.700000000E+01
11010000 1.090000000E+02
11110000 1.210000000E+02
11110001 1.330000000E+02
11110111 1.450000000E+02

VARMIST TraceRcvuser : condit ional
Rcvuser.czs.1 T1 me
01010101 1.350000000E+01
01010001 2.550000000E+01
11011001 3.750000000E+01
10010001 i) .950000000E+01
00000001 6. 150000000E+01
10001011 7.350000000E+01
10011111 8.550000000E+01
11010011 9.750000000E+01
11010011 1.095000000E+02
11010000 1.215000000E+02
11110000 1.335000000E+02
11110001 1.455000000E+02

VARHIST TraceTester : condit ional
Tester.czp.1 T1 me
Goodbyte 1.350000000E+01
Goodbyte 2.550000000E+01
Goodbyte 3.750000000E+01
Goodbyte 4.950000000E+U1
Goodbyte 6.150000000E+01
Goodbyte 7.350000000E+01
Goodbyte 8.550000000E+01
Goodbyte 9.750000000E+01
Goodbyte 1.095000000E+02
Goodbyte 1.215000000E+02
Goodbyte 1.335000000E+02
Goodbyte 1.U55000000E+02

Figure 4.11. Traces of the instances, TraceSendconverter, TraceRcvuser
and TraceTester

www.manaraa.com

254

VARHIST TraceMedlum
Med Ium.cxs.1
I J- - start bit

• eight-bit byte

if
—-two stop bits

- - idle line
— start bit

hi
h J

—eight-bit byte

-- two stop bits

h
h
I
h
h
I
I
h
h
h
h
I
h
I
I
h
I
I
I
h
h
h
h

: regular
Time
1 .OOOOOOOOOE+00
2.000000000E+00
3.OOOOOOOOOE+00
4.000000000E+00
5.000000000E+00
6.000000000E+00
7.000000000E+00
8.0a0000000E+00
9.000000000E+00
1 .OOOOOOOOOE+01
1.100000000E+01
1.200000000E+01
1.300000000E+01
1 .1)OOOOOOOOE+O1
1 .500000000E+01
1.600000000E+01
1 .700000000E+01
1.800000000E+01
I .900000000E+01
2.000000000E+01
2.100000000E+01
2.200000000E+01
2.300000000E+01
2.1IOO0OO0OOE+O1
2.500000000E+01
2.600000000E+01
2.700000000E+01
2.800000000E+01
2.900000000E+01
3.000000000E+01
3.100000000E+01
3.200000000E+01
3.300000000E+01
3. ')00000000E+01
3.500000000E+01
3.600000000E+01
3.700000000E+01
3.800000000E+01
3.900000000E+01
II.OOOOOOOOOE+01
4.100000000E+01
' I .200000000E+01
4.300000000E+01
4.400000000E+01
U.500000000E+01
II .600000000E+01
4.700000000E+01
11.800000000E+01
l>. 900000000E+01
5.000000000E+01
5. lOOOOOOOOE+01
5.200000000E+01
5.300000000E+01
5.400000000E+01
5.500000000E+01
5.600000000E+01
5.700000000E+01

Figure 4.12» Traces of the instance, TraceMedium

www.manaraa.com

255

h 5.800000000E+01
h 5.900000000E+01
h 6.000000000E+01
I 6.100000000E+01
h 6. 200000000E+01
I 6.300000000E+01
I 6.400000000E+01
I 6.500000000E+01
h 6.600000000E+01
I 6.700000000E+01
h 6.800000000E+01
h 6.900000000E+01
h 7.000000000E+01
h 7. lOOOOOOOOE+01
h 7.200000000E+01
I 7.300000000E+01
h 7.U00000000E+01
I 7.500000000E+01
I 7.60Û000000E+01
h 7.700000000E+01
h 7.800000000E+01
h 7.900000000E+01
h 8.000000000E+01
h 8.100000000E+01
h 8.200000000E+01
h 8.300000000E+01
h 8.400000000E+01
I 8.500000000E+01
h 8.600000000E+01
h 8.700000000E+01
I 8.800000000E+01
h 8.900000000E+01
I 9.000000000E+01
I 9.100000000E+01
h 9.200000000E+01
h 9.300000000E+01
h 9.U000Q0000E+01
h 9.500000000E+01
h 9.600000000E+01
I 9.700000000E+01
h 9.800000000E+01
h 9.900000000E+01
I 1.OOOOOOOOOE+02
h 1.010000000E+02
I 1.020000000E+02
I 1.030000000E+02
h 1.0I40000000E+02
h 1.050000000E+02
h 1.060000000E+02
h 1.070000000E+02
h 1.080000000E+02
I 1.090000000E+02
h 1.100000000E+02
h 1. 110000000E+02
I 1.120000000E+02
h 1.130000000E+02
I 1 . 1t|0000000E+02
I 1.150000000E+02
I 1.160000000E+02
I 1.170000000E+02

Figure 4.12. (continued)

www.manaraa.com

— a-crn-o" —3-3-3-3" 3" 3" 3-3-— 3" 3" 3" 3" 3-3" 3" —3-3" 3-

to
Ln
O

ui-CTxr^jr^jri-xrjrxroJwoJOJCoojojojcocurorurorvjrorororororo—»—»
ov0C3-JCNV^-C0jrv3—•ooo3-JCNVjî£'03r\3—kOOCD-^cwjï^ojro—*avoco
0
0
0
0
0
0
0
mmnmnrnnmmmnmmmrnmmrnmnmnmrnnnrnrnmrnrnnrn
+
ooooooooooooooooooooooooooooooooo
rorowrororororuMwrororororvjrvjforororororororofvjrorvjrorororororv)

www.manaraa.com

257

D. Advanced Data Communication Control Procedures Simulation

•• This section Illustrates the use of the SAN and the SAS in

simulating a fairly complicated data communication protocol, namely the

Advanced Data Communication Control Procedures (ADCCP); ADCCP is the

American National Standard version of the High Level Data Link (HDLC).

The ADCCP is a set of algorithms for passing arbitrary bit sequences (or

messages) between devices connected by a bit serial communication

medium.

The work presented in this section is based on the work of Dayun He

in using the SAN and the SAS to simula';e and test an ADCCP system. The

SAN model of the ADCCP system is based on the formal ADCCP station model

developed by Piatkowski [Piatkowski 1979]. The details of the ADCCP SAN

model and the results of the simulation testing are presented in a paper

by Piatkowski, Ip and He [Piatkowski et al. 1982]. Part of the following

paragraphs are taken from this paper.

In summary, a SAN model of a one-way point to point channel

consisting of the lowest three levels of two ADCCP stations were simulated

and tested. A block diagram of the channel is shown in Figure 4.13. The

ADCCP channel components are shown enclosed in the dashed boundary; the

additional external components are used to control and monitor the system

for exercising and testing. The kind of SAN component(s) comprising each

block in Figure 4.13 is indicated in the figure by the expressions within

the parentheses; e.g., ClockMgr a CFP, FCSSend a subsystem of one CFP and

eighteen FSMs. There are four ENVs, one CFP and a CLK for the

www.manaraa.com

258

Excite
(ENV)

ZP.l

i ext (p)

XP.l
Clock Mgr yp ,

(CFP)
ZP.2 XP.2 clk(p)

start,
reset (p) timeout (p)

XP.l ZP.l

Send Clock
(CLK)

Send User
(ENV)

XP.l ZP

clk(p)

.1 I XP.l
0,1.F(p) t

HILevel
(ENV)
ZP.l

ZP.2 , ^ XP.l
FCSSend yn ,

(CFP, 18 FSMs)
XP.2 ZP.l

clk(p) 0.1,F(p)

ZP.2 XP.l
ZeroInsertSend

(FSM) XP.3
XP.2 ZP.l

ZP.2
XP.l Fla^AbortSend

ZP.l

XP.2
XP.3

iO.l(p)
XP.l

Medium
(DELP)
ZP.l

0.1,(P)

XP.l
FlagAbortRcv
(CFP, 10 FSMs)

ZP.l
; O.I.F.Ab(p)

XP.l
ZeroInsertRcv

(FSM)
ZP.l

0,1 ,F,Ab(p

XP.l
FCSRcv

(CFP. 17 FSMs)
ZP.l

.OĴ FjAbXûJ

RcvUser

Ab(p)

FrameSend

FrameRcv

Figure 4.13. Overview structure of a one-way point-to-point ADCCP

channel with manual tester

www.manaraa.com

259

control and monitoring components (those components reside outside the

dashed boundary). There are twenty FSMs and one CFP in the send station,

a DELP in the Medium, and twenty-eight FSMs and two CFPs in the receive

station of the channel.

The model specifies an automatic repeating clock for channel timing

and three terminal environments for manual data input and output

monitoring. A formatted listing of the variable history traces for a

sample run is shown in Figure 4.14. In it, we see that the sending side

(represented by SendUser.czp.1) transmitted the sequence

1 1 (F C S) F O l l l l l l O (F C S) F 1 1 A b

The receiving side (represented by FCSRcv.czp.l) correctly ignored

the bits preceeding the initial flag, checked the FCS (Frame Check

Sequence) for the first frame, passed the first frame up to the

receiving user, and detected the Abort. Note the proper timing for the

flag bits, zero insertion and deletion, and FCS handling.

In the second simulation run, a modified version of the same model

with automated (procedural) environment control and monitoring was

created by replacing the external components and variable history of the

previous version. This version provides for automatic high-speed long-

length random testing of the channel model. In this case, the sending

sequence was generated randomly and a single test monitoring ENV

determined that the receiver correctly delivered messages as sent by the

sender. The block diagram of the ADCCP channel with automatic tester is

shown in Figure 4.15. A formatted listing of the variable history

traces for a sample run is shown in Figure 4.16.

www.manaraa.com

ClocKMgr.c2p.1 FCSSsnd.czp.Z SondUsBr.ezp.1 FCSRcv.ozp.l H1 Level.ezp.1 Time

0
e l k e l k 1 • • 1

e l k e l k 1 - • 2

e l k e l k F - - 3
e l k - - - - 1
e l k - • - - 5
e l k - -, 6

e l k •- • - - 7

c 1 k - - 8

e l k - . . . 9

e l k - 10

e l k - • 11

e l k - . . . 12

e 1 k - . . . 13

e l k - . . . 114

c i k - 15

e l k - . . . 16

e l k - . . . 17

e l k - - 16

e l k - . . . 19

e l k - . . . 20

e l k - . . . 21

e l k - . . . 22

e l k - . . . 23

e l k - . . . 21t

e l k - . 25

e l k - - - - 26

e l k e l k 0 - - 27

e l k e l k 1 28

e l k e l k 1 29

e l k e l k 1 30

e l k e l k 1 31

e l k e l k 1 32

e t k - - 33

e l k e l k 1 34

Igure 4.14. Traces for

tester

a sample run of the ADCCP channel with manual

www.manaraa.com

261

elk oik 0 0 - 35

elk elk F 1 - 36

elk - - 1 - 37

elk - - 1 - 38

elk - - 1 - 39

elk - - 1 - ^0

elk - - - - 41

elk - - 1 - 42

elk - . - 0 - 43

elk - - 1 - 44

elk - - 0 - 45

elk - - 0 - 46

elk - - 0 - 47

elk - - 0 - 46

e 1 k - - 0 - 49

elk - - 0 - 50

elk - - 1 - 51

elk - - 0 - 52

e 1 k - - 1 - 53

c 1 k - - 0 - 54

elk - - 1 - 55

elk - - 0 - 56

elk - - 1 - 57

elk - - 1 - 58

elk - - 0 - 59

elk elk 1 GF - 60

elk elk 1 - - 61

elk elk - - Ab 62

01 k - - - - 63

elk - - - - 64

elk - - - - 65

c 1 k - - - - 66

elk - - - - 67

c 1 k - - Ab - 69

www.manaraa.com

262

Send User
(ENV)

XP.l ZP.l

Excite

1 ext (p)

XP.l
Clock Mgr

(CFP)
ZP.2 XP.2

ZP.l
clk(p')

clk(p)

0.1.F(p)

ZP.2 XP.l
FCSSend

(CFP, 18 FSMs)
XP.2 ZP.l

clk(p) 0.1.F(p

ZP.2 XP.l
ZeroInsertSend

(FSM)
XP.2 ZP.l

start.
reset (p) timeout (p)

XP.l ZP.l

Send Clock
(CLK)

felk (p) Tô7iTF(p

ZP.2 XP.2
yp ^ Fla^AbortSend

ZP.l

lO.l(p)

XP.l
Medlurn
(DELP)

ZP.l
i 0.1.(p)

XP.l
FlagAbortRcv
(CFP, 10 FSMs)

ZP.l
0.1,F,Ab(p)

XP.l
ZeroInsertRcv

(FSM)
ZP.l

O.l.F.Ab(p)

XP.l
FCSRcv

(CFP. 17 FSMs)
ZP.l

XP.l ZP.l
RcvUser

(ENV) ZP.2

0,1 (p)

XP.l
Sendque
(OE)

UNCOtVlVECTEP

ODodbyte,

Badbyte(p)

CP.mp)

Figure 4.15. Overview structure of a one-way point-to-point ADCCP

channel with automatic tester

www.manaraa.com

263

Tester.czp.1 T ime

Goodframe 4.100000000E+01

Goodframe 9.400000000E+01

Goodframe 1.620000000E+02

Goodframe 1.870000000E+02

Figure 4.16. Traces for a sample run of the ADCCP channel with
automatic tester

www.manaraa.com

264

The simulation and testing of the ADCCP system demonstrates that the

SAN and the SAS are capable of simulating and testing complex protocol

systems and with the help of the procedural environment, random sequences

of bit pattern, can be generated to test the simulated system. In the

process of coding the SAN model of the ADCCP protocols, Dayun He found

several errors in the graphical ADCCP model [Platkowski 1979]; these

errors were verified by SAS simulation runs. Equally Important, an

unknown error in the ADCCP was discovered through a SAS run.

www.manaraa.com

265

V. DISCUSSION AND CONCLUSIONS

A. SAN and SAS Model Size

The State Architecture Simulator (SAS) Is running on a VAX 11/780

at Iowa State University using the VAX VMS V2.0 operating system. The

current version of SAS consists of approximately lOK lines of PASCAL

source code using 800 blocks of memory with 512 bytes per block. The

source code takes 5 cpu minutes to compile. This is a one-time

operation. The cpu time required to transform, compile, and link the

simple SAN model (Figure 4.2) with 47 lines of specification code into

the executable simulation file Is about 30 seconds. Whereas for the

ADCCP model with 1625 lines of specification code, the total cpu time

required is about one minute.

SAS Is dimensioned to handle up to 50 FSMs, 20 each of CFFs, CFSs,

and ENVs, and 10 each of DELPs, DELSs, QUEs, CLKs, and DERs. Each

component can contain up to 20 input/output streams of each kind (XP,

XS, ZP, or ZS). Each pulsed and static output can have up to 10 different

destinations (fanout). The maximum number of values that a state set

can have is 100 and the maximum number of different string values used in

the local FNS, FOUTP, and FOUTS procedures in the SAN model is 1000.

The above dimensions have been chosen so that a fairly complicated

protocol, such as the ADCCP channel, can be represented in SAN and

exercised in the SAS environment, while at the same time the amount of

memory space needed is under control. For example the ADCCP channel

needs 67 blocks for the SAN model and 350 blocks for the executable

www.manaraa.com

266

simulation file. There is no reason that the SAS dimensions can not be

extended to allow simulation of more complicated protocols, provided the

VAX 11/780 system has enough memory and the PASCAL constraints are not

violated.

In the current SAS implementation, all the component names are

mapped into corresponding enumerated names. This is done so that each

component can be referenced via an array indexed by the enumerated name.

In PASCAL the enumerated name has a range of 256 different values. This

implies that the maximum number of components allowed in the SAN model

is 256. However, if the component names are mapped into an integer type

Instead of enumerated type, the above mentioned constraints can be

extended to allow 231 - 1 components.

B. Experience with SAN and SAS

SAS has been in operation since February 1982. It has been used as

a teaching tool in a graduate course in Formal Methods of Protocol

Design at Iowa State University. Students were using the SAN and the

SAS to simulate and exercise some simple discrete components.

Subsequently they formed three groups with two persons in a group to

simulate and exercise a simple unidirectional IEEE 488 system with a

source and three acceptors linked together on a IEEE 488 Bus. After two

90 minute lectures on the SAN and the SAS, the students felt

comfortable enough in using the SAN and the SAS to simulate and test some

simple discrete systems. The students also made a few remarks about the

www.manaraa.com

267

SAN semantics and the Interactive SÂS messages which were confusing to

them; for example, several unnecessary SAS messages which appeared on

the terminal have been taken out. Right now the only messages shown on

the terminal are those necessary to inform the users how to respond.

We have simulated and tested a SAN model of the start-stop

communication protocol and an ADCCP channel as mentioned In the previous

chapter. In the above experiments, we used all of the kinds of

primitive SAN components and performance trace instances in the

simulations. During the simulation process, we can observe the status

of each component at different simulation times. The SAS also records

traces of different component statuses (identified by the component's

state, input, and output variables). The above experiments demonstrated

that the SAN and the SAS can be used to simulate and test a fairly

complicated protocol. On the other hand, some SAS programming

bugs and design philosophy deficiencies were discovered during the

experiments ? for instance, the SAN syntax error messages were improved

to provide better understanding for users, the update event of a

component with execution time equal to zero has been changed to execute

immediately after Its associated start event, the random number generator

was modified to provide better uniform distributions, and the performance

trace was extended to record variables until the end of the simulation.

C. Reliability of SAS

There are two aspects concerning the reliability of SAS. Initially,

one Is concerned with how closely the SAS simulation is related to the

www.manaraa.com

268

SAN model. Secondly, the robustness of the SAS program is considered.

SAS, a general purpose simulator, was designed to directly execute

the SAN specification. In other words, the SAN model is the simulation

model, unlike some modelling methods where the model has to be translated

into a programming language before the simulation can be exercised. In

using the SAN and the SAS to simulate and exercise the start-stop

protocol and the ADCCP channel, we found that the SAS simulation does

totally reflect the behavior of the SAN model. The SAS gives a higher

priority to the ENV component (the ENV components are executed first for a

given simulation time). This was not a property of the SAN model until

SAS was built.

As for the robustness of the SAS program, each major procedure had

been tested before it was incorporated in the SAS main program.

Before the SAS was released, the SAS was tested by simulating a system

with all kinds of components and performance trace instances. Since

then, SAS has been used as a teaching tool in a graduate course in

Formal Methods of Protocol Design at Iowa State University as mentioned

in the previous section. I have also used the SAN and the SAS to

simulate and exercise a unidirectional start-stop link. Dayun He, a

Visiting Scholar from the People's Republic of China, has used the SAN

and the SAS to simulate and test the ADCCP channel. Through the use by

different groups of people, the SAN and the SAS were debugged and

upgraded. In general, the groups who used the SAN and the SAS did not

find any major problem in simulating and testing their protocol systems.

However, some modifications were made as mentioned in the previous

www.manaraa.com

269

paragraphs. Presently, Dayun He is simulating a complete ADCCP system

with a primary and a secondary station. In this case, the dimensions of

the SAS have been significantly extended to be able to simulate the whole

ADCCP system.

D. Limitations of SAN and SAS

The experience in using the SAN and the SAS revealed to us that the

currently supported version of SAN and SAS has a number of limitations.

The following discussion reflects the author's opinion, in the order of

significance, of the limitations that he would like to see removed. The

changes which would result in major improvements for the SAN and the SAS

are presented first. They are as follows:

a) The current version allows only string type SAN variables,

which is very cumbersome in modelling operations with natural

numeric value; e.g., sequence numbers. We propose to have

integer or real type in addition to the string type SAN

variable to allow PASCAL arithmetic operations on SAN

variables. Internal to the SAS, the string type SAN variables

would be interpreted to be either integers or reals. This is

done to have a uniform data type for all SAN variables as far

as SAS is concerned.

b) The current ENV type components do not have any state

variable. We propose to introduce an explicit state variable

into the ENV type component. The state variable is used as a

www.manaraa.com

270

local memory to retain partial input history information of an

ENV component after the component is executed.

c) The current local FNS, FOUTP, and FOUTS procedures do not allow

any user declared local variables. The addition of such local

variables to the FNS, FOUTP, and FOUTS procedures will greatly

enhance the convenience in using local procedures. For

instance, a local integer variable, 1, can be used in a for

loop to reference a set of outputs (for 1;=1 to n do

ntzp[i]:='0'), instead of writing out all the output

assignments one by one.

d) The current SAN state and Input/output variables are declared

as simple strings. We propose to add arrays of strings to

the SAN state and input/output variables so that it will be

more convenient to model components with parallel data paths;

e.g., defining an eight-bit byte as an array [1..8] of 0 or 1

[Piatkowskl 1981].

e) The current system components are defined individually with

explicit input and output connections. If a subsystem with

Identical components is used, like a shift register made up of

a set of interconnected flip-flops, the current SAN and SAS

force the user to define each individual component and their

Interconnections one by one. We propose to allow such built-up

systems to be defined as "arrays of components," e.g.,

defining a shift register as an array of rippling flip-flops

[Piatkowskl 1981].

www.manaraa.com

271

f) The current version has only nine primitive components. We

propose to allow the user to define new types of system

components built-up from the primitive component types. This

idea was kept in mind in the design of the SAS so that SAS

can be upgraded to allow the above new feature.

g) The current Data Input process will stop the SAS run whenever

a SAN syntax error is encountered. We propose to allow the

Data Input process to detect multiple SAN syntax errors before

the SAS run is terminated.

h) The current version has a multiple pulsed input check option

(mulpulsecheck) for each ENV component and a global mulpulse-

check for the rest of the components with pulsed inputs. It

would be convenient to have individual multiple pulsed input

check options for each component instance; e.g., some FSM

components may allow multiple pulses arriving simultaneously

and others not.

1) The current initialization instance can not initialize the

components' status e.g., Texec or defsinit. We propose to

allow the initialization instance to have an option to re­

initialize the components' status without changing the

default value of the components.

j) We propose to add an additional command to the Terminal Mode

Command Language to interactively suppress and invoke the

trace of the SAS messages.

www.manaraa.com

272

The above limitations are presented in order of significance; (a)

the most significant and (j) the least significant. The modification

steps for some of the limitations stated will affect the status of

the other limitations. Hence it appears advantageous to the author to

solve the afore-mentioned limitations in the following order: (b), (c),

(g). (h), (j), (i), (a), (d), (e), and (f).

E. Conclusions

The author would like to point out some of his research

contributions. The major contribution is the design and implementation

of the general purpose State Architecture Simulator (SAS) that accepts

system specifications written in the State Architecture Notation (SAN),

compiles them into an executable PASCAL simulation program, and executes

them. In the process of developing the SAS, he refined the SAN language

proposed by Piatkowski [Piatkowskl 1981] and developed or helped develop

some data communication SAN models (the start-stop link and the ADCCP

channel) to illustrate SAN and SAS.

The above contributions made it possible to have a teaching tool in

a graduate course in Formal Methods of Protocol Design at Iowa State

University. The fact that SAS allows users to observe and interact with

simulations of SAN models of protocol system is a valuable tool in

informal design validation.

www.manaraa.com

273

VI. BIBLIOGRAPHY

Alfonzettl, S.; Casale, S.; and Faro, A. "A Formal Description of the

DTE Packet Level in the X.25 Recommendation." Alta Frequenze
48, No. 8 (August 1979): 339-348.

Bjorner, D. "Finite State Automaton - Definition of Data Communication

Line Control Procedures." Proceedings of the Fall Joint Computer

Conference. Montvale: AFIPS Press, 1970.

Bochmann, Gregor V. "Logical Verification and Implementation of

Protocols." Pp. 8.5-8.20 in Proceedings of the Fourth Data

Communication Symposium. New York, N.Y.: IEEE, 1975.

Bochmann, Gregor V.; and Chung, R. J. "A Formalized Specification of

HDLC classes of Procedures." Pp. 03A:2.1-03A;2.11 in Proceedings

of the National Telecommunications Conference. New York, N.Y.:
IEEE, December 1977.

Bochmann, Gregor V. "Finite State Description of Communication

Protocols." Computer Networks 2 (October 1978); 362-372.

CCITT. Provisional Recommendation X.25, Interface Between Data
Terminal Equipment (DTE) and Data Circuit Terminating Equipment (PCE)

for Terminals Operating in the Packet Mode on Public Data Networks.

Geneva: Consultlve Committee for International Telephone and
Telegraph, 1977.

Danthine, A. S.; and Bremer, J. "Modelling and Verification of End-to-

End Transport Protocols." Computer Networks 2 (October 1978):

381-395.

Diaz, Michel. "Modelling and Analysis of Communication and Cooperation

Protocols Using Petri Net Based Models." Proceedings of the

Second International Workshop on Protocol Specification, Testing,

and Verification. Idyllwild, CA: n.p.. May 1982.

Digital Equipment. Digital Data Communications Message Protocol

(DDCMP). DIGITAL NETWORK ARCHITECTURE (DECNET). Maynard, MA:

Digital Equipment Corp., March 1978.

Gardner, Robert I. "State of the Implementation of SARA." Pp. 82-83 in

Proceedings of the Symposium on Design Automation and

Microprocessors. New York, N. Y.: IEEE, February 1977.

www.manaraa.com

274

Gouda, M. G.; and Manning, E. G. "Protocol Machines: A Concise Format

Model and its Automatic Implementation." Pp. 346-350 in
Proceedings of the Third International Conference on Computer

Communications. Washington, D.C.; International Council for

Computer Communication, August 1976.

Green, P. E., Jr. Computer Network Architecture and Protocols. New

York, N.Y.: Plenum Press, 1982.

Hailpern, B.; and Owicki, S. "Verifying Network Protocols Using

Temporal Logic." Pp. 18-28 in Proceedings of NBS Trends and

Applications Symposium. New York, N.Y.; IEEE, 1980.

Harangozo, J. "An Approach to Describe a Link Level Protocol with a

Formal Lanauage." Pp. 4.37-4.49 in Proceedings of the Fifth Data

Communication Symposium. New York, N.Y.: IEEE, September 1977.

Hewlett-Packard. Condensed Description of the Hewlett-Packard Interface

Bus. —hp—part No. 59401-90030. Loveland, Colorado: Hewlett-

Packard Co., 1975.

IEEE. IEEE Digital Interface for Programmable Instrumentation, IEEE

Standard 488-1978. Long Beach, CA; IEEE, 1978.

Jensen, Kathleen; and Wirth, Nicklaus. PASCAL User Manual and Report.

New York, N.Y.: Springer-Verlag, 1978.

Kawashima, H.; Futami, K.; and Kand, S. "Functional Specification of

Call Processing by State Transition Diagrams." IEEE Transactions

on Communications COM-19 (October 1971): 581-587.

Merlin, P. M.; and Farber, D. J. "Recoverability of Communication

Protocols Implications of a Theoretical Study." IEEE Transactions
on Communications COM-24 (September 1976); 1036—1043.

Piatkowski, T. F. "Finite-State Architecture." IBM Technical Report
TR29.0133. IBM Corp., Research Triangle Park, North Carolina,

July 1975.

Piatkowski, T. F. "A Formal Model of the Advanced Data Communication

Control Procedures (ADCCP)." A report. Institute for Computer
Science and Technology, National Bureau of Standards, Washington,
D.C., September 1979.

Piatkowski, T. F. "An Engineering Discipline for Distributed Protocol

Systems." Pp. 177-215 in Proceedings of the First International

Workshop on Protocol Specification, Testing, and Verification.

Middlesex, UK: National Physical Laboratory, May 1981.

www.manaraa.com

275

Piatkowski, T. F.; Ip, Lap-Kin; and He, Dayun. "STATE ARCHITECTURE

NOTATION AND SIMULATION: A Formal Technique for the Specification
and Testing of Protocol Systems." Proceedings of the Second

International Workshop on Protocol Specification, Testing and

Verification» Idyllwlld, OA; n.p., May 1982.

Postel, J.; and Farber, D. "Graph Modelling of Computer Communications

Protocols." Pp. 66-67 in Proceedings of the Fifth Texas
Conference on Computing Systems. Long Beach, CA; IEEE, 1976.

Proceedings of the First International Workshop on Protocol

Specification, Testing and Verification. Middlesex, UK: National

Physical Laboratory, May 1981.

Proceedings of the Second International Workshop on Protocol

Specification. Testing and Verification. Idyllwlld, CA; n.p..

May 1982.

Razouk, Rami R.; and Estrin, Gerald. "The Graph Model of Behavior

Simulator." Pp. 89-98 in Proceedings of the Symposium on Design

Automation and Microprocessors. New York, N.Y.: IEEE, February
1977.

Remes, Antero. "Simulation Techniques in Network Design." in Computer
Networks and Simulation, pp. 85-100. Edited by S. Schoemaker.

Amsterdam; North-Holland Publishing Company, 1978.

Rockstrom, Anders; and Saracco, Roberto. "SDL - CCITT Specification and

Description Language." IEEE Transactions on Communications COM-24
(June 1982); 1310-1318.

Schultz, G. D.; Rose, D. B.; West, C. H.; and Gray, J. P. "Executable

Description and Validation of SNA." IEEE Transactions on

Communications COM-28 (April 1980); 661-677.

SNA. SNA Format and Protocol Reference Manual; Architecture Logic.

SC 30-3112. White Plains, N.Y.; IBM Corp., 1976.

SNA. SNA Format and Protocol Reference Manual: Architecture Logic.

SC 30-3112-01. White Plains, N.Y.: IBM Corp., 1978.

Stenning, V. N. "A Data Transfer Protocol." Computer Networks 1
(September 1976); 99-110.

Sundstrom, R. J. "Formal Definition of IBM's System Network
Architecture." Pp. 03A;1.1-03A:1.7 in Proceedings of the National

Telecommunications Conference. New York, N.Y.; IEEE, December

1977.

www.manaraa.com

276

Sunshine, Carl A. "Survey of Protocol Definition and Verification

Techniques." Pp. F1.1-F1.4 in Proceedings of the Computer Network

Protocols Symposium. Liege, Belgium: University of Liege,
February 1978.

Sunshine, Carl A. Communication Protocol Modelling. Dedham, MA:
Artech House Inc., 1981.

Sussenguth, E. "System Network Architecture." Interface '76. Miami,
Florida; n.p., 1976.

Symons, F. J. W. "Introduction to Numerical Petri Nets, a General Model

of Concurrent Processing Systems." Australian Telecommunication

Research 14, No. 1 (1980a); 28-32.

Symons, F. J. W. "The Verification of Communication Protocols using

Petri Nets." Australian Telecommunication Research 14, No. 1
(1980b): 34-38.

Teng, Albert Y.; and Liu, Ming T. "A Formal Approach to the Design and

Implementation of Network Communication Protocol." Proceedings of
the COMPSAC. Long Beach, CA; IEEE, 1978.

Yeh, Jeffy W. "Simulation of Local Computer Networks." Pp. 56-66 in
Proceedings of the 4th Conference on Local Computer Networks. New
York, N.Y.; IEEE, October 1979.

www.manaraa.com

277

VII. ACKNOWLEDGMENTS

The author would like to thank his major professors Dr. Thomas F.

Piatkowski and Dr. Arthur V. Pohm. In particular, Dr. Piatkowski

provided valuable suggestions, guidance, and encouragement throughout the

work. The Affiliates Program in Electronics Science and Technology, Iowa

State University, provided financial support in the form of a graduate

research assistantship.

Thanks are also due to Mr. Dayun He for the discussion of his

experience in using SAN and SAS, to Mr. Marcus Jobe for proofreading

the dissertation, and to Mrs. Sherry Smay for typing the dissertation.

This work is dedicated to the author's wife, Esther, for her love,

patience, and support and to the author's parents and brother for always

encouraging the author in his study.

Finally, the author thanks God for His abundant blessing.

www.manaraa.com

278

VIII. APPENDIX; STATE ARCHITECTURE NOTATION

SYNTAX DIAGRAMS

This appendix summarizes the syntax of State Architecture Notation

(SAN) with syntax diagrams in the format commonly used for PASCAL

[Jensen 1978]. The elements such as integer and real, which are the

same as PASCAL syntax, are not shown in the following syntax diagrams.

In case a PASCAL procedure is needed, the user should refer to the

syntax in the PASCAL User Manual [Jensen 1978]. The syntax diagrams do

not reflect a direct implementation of the SAS syntax checking process;

however, the syntax diagrams do provide a correct format for the users to

specify their SAN models. Users are also urged to follow the syntax

diagrams to specify their SAN model.

www.manaraa.com

279

letter ^ ^ letter ^

• / \ ^
digit ^

• /

' ' ^ digit ^

streamvalues

<î>

SUne

) streamvalues

ZPUne

XiHD ̂integer <i UNCONNECTED >

KI> Integer

(2> streamvalues
~KD"

ZSUne

Integer < UNCONNECTED >
 ̂ >f

Integer h3«-0<-G>

0 ^ streamvalues HG>

www.manaraa.com

280

da/slnlcllne

d e f a l n l t ^ j a t r e a r a v a l u s s

XPUns

Integer —|-^UNCONNECTED ^

-)(FROM)-J

Integer <-G)—(5MD—'

ki> ^ streamvalues KI>
XSUne

I n t e g e r — U N C O N N E C T E D ^

-J(FROM V-T

Integer

streamvalues KD

xp localvar

<E>
<H>

•<H>

i5n
-(S)—

Integer

www.manaraa.com

281

ntza

Uf localvar J
nts

4 name

•) localvar —

updatevar

—>(>

-C)-» Integer

•<*)—'
ntip

—^
name

-G>-
>

—
localvar

gobalvar

KD ̂ localvar

expression

j localvar

r*®—1

e
—<>)—5

^

— n a m e — :

localvar i >

) expression

www.manaraa.com

282

) e x p r e s s i o n — < s t a t e m e n t - L ^âè^-^ statement

/" N I
J(wmio)—j expression M5M statement

repeat l-y) statement -j—^until ^—j expression

-<D-
begin statement

updatevar localvsr
A

— n a m e — ^ 7 ^

PROCEDUREspec

i statement

FSMFNSUno

-<2 ̂

—qJ H3«-

=» nts KD

FSMFNSspeo

-h(S)-<Î>-

procedure j—) PROCEDUREspec

L- FSMFNSUne

END

www.manaraa.com

283

FSMFOUTPUno

xp

L_Qe_l 1—

ntzp WD

FSMFOUTPapac

—^ FOUTPVT)-
-4^ procedure) PROCEDUREspec

FSMFOUTPUne
/ ;

FSMFOUTPUne
/ ;

. END

FSMFOUTSUne

— " " 8 —

FSMFOUTSopec

F̂OUTsl-Ŵ)—
K procedure) J PROCEDUREspec

ly—V—I FSMFOUTSUne

'!END Mf ; 1 >

CFPFOUTPUne

4 xp "t'p -T-?(7̂ >

I—0j —(D*-

CFPFOUTPspeo

)(F0UTP]_4©_

procedure ^ j PROCEDUREspec

^ JËL CFPFOUTPUne

www.manaraa.com

284

CFSFOUTSUno

ntzs

&-

CFSFOUTSspec

FOUTS

procedure M PROCEDUREspec

K -jg- W \ CFSFOUTSUne / ' CFSFOUTSUne / '

END

deftexecUne

-)(deftexec^ 3 +real 3^7) >

deftdeUlne

deftdel""))(T)—3 +roal 5^7^ >

defzslnltUne

-j(defzalnlt""^ "'me -r-)(T)

www.manaraa.com

285

FSMspec

) name Intorlaced ^—; SUne

XSUno (—

ZPUne

ZSUna

FSMFNSapec (-

XPUne defslnltUne XPUne defslnltUne

i FSMFOUTPspec

4 FSMFOUTSspec

•) deftexecUne —(D-

CFPspec

narao Interlaced ^

XPUne

XSUne •

ZPUne i CFPFOUTPspoc

deftexecUne

www.manaraa.com

286

CFSapec

—) name —)Ç Intarlaced

defzslnlUlne CFSFOUTSapec

XSUne XSUne

ZSUne ZSUne » /

i deftexecUne >(̂)—KD"

DELPspoc

^ JZEItE ") > name —)^T)—^ Interlacgd ^£BflM ̂

r-(T>- atreamvalues K->- Integer KDKSHOH name

n a m e — ' I n t e g e r — | r * C ^

— deftdelUne *—(Ty- streamvaluea <-©J

DELSapec

^ DELS ^ » name —I n t e r l a ç a d ^

atreamvalues HJ>- Integsr T-Q«—(J)<—Q<—

•>(T)—>^2)—name —i(^—'C^)—KD—* '"'9®®''

stroamvaluea f~— deftdelUne defzalnltUna

— — K l ^

www.manaraa.com

287

QUEspec

> n a m e — ^ I n t e r l a c e d ^

I n t e g e r « — — " " ™ ' — (F R O M \ rfxP^

< UHCOMMECTED * >
5 s t r e a m v a t u e s — F R O M ^ ' •)

K UNCONNECTED

(7)< (^y-(T)(integer (

name —)(2)—)(2)—) '"'«ger

UNCONNECTED >
^ — atreamvalues f—

UNCONNECTED >
i name; —{(T)— 5 Integer ^ open ^

—^cloaednotempty Ç eloaedempty

dettenq +rottl ——

< (T)<—^—(T)<— •real

www.manaraa.com

288

CLKspec

— 5 n a m e — ^ I n t e r l a c e d

c UNCONNECTED)
(zp^—(T)<-{lâïsE"^(-(T)^ reset Integer (—

< UNCONNECTED >
r) n a m e — ? Integer

< UNCONNECTED >
<T>J

timeout Xîh

integer <r-(7yr-(^yr-Çyr- name

<D-
—^ XSSSL }—)(/)—}(^"ïâQi!^ }~~K'0~K isaslis)

< (T)<—(END)< (Jy— +raal (

OERspec

3 name j^^ntorlacod"^ 4^ FROM^

UNCONNECTED

— I n t e g e r f — n a m e (•

kîKIHjy
-0-<5)-<ZH Integer

UNCONNECTED

www.manaraa.com

289

boolean expression

-)((now }-

tend

-̂ 0-H

—

•5 +roal

globalvar

-0-̂

•€H
.J0-)

-<>H

—<0-̂

-GK
globalvar

r®i <D— boolean expression l-O

<£>

-)(m»)-

4^ ^

www.manaraa.com

290

ENVspec

— j n a m e — I n t e r l a c e d " ^

L ZPUne -) XSUne L XPUne "j ^ ZSUne

^FUNCTION) terminal ^

procedure ^—3
PASCAL' '

ENV
procedure -î(S)-

f©~1

KIK mulpulaecheck >
—^ tru8 ^

a>

deftexecUne defzslnltUne

— S T A R T E X P ̂ - 4 (T) — 3
, boolean
expression

c
i—^ everytlmechanoe

(^ everyevent

-©Hs STARTEXPCHECK

— K D "

p-Q)̂

VARIABLESUne

.VARIABLES ^ (T)-^ alobalnamo "T^T) >

^2>-

CHECKOPTUne

CHECKOPT ^ i(T)y-)(jW2£ }—

everyevent ^

-^evervtlmechange ̂)

<!>

^ A PASCAL ENV procedure as described in Chapter II.J

www.manaraa.com

291

VARHISTspM

< VARHISTORY name

L—

^ r e g u l a r ^ ^ VARIABLEUne — D T H I S T O R Y))

Î ''conditional ^) VARIABLEUne —J^CONDITION ^
boolean

expression
Î

(^)< OHEOKOPTUne É

EXFHISTspec

< EXPHISTORY ^ 9 namo regular ^

MlH-
boolean

expression
EXPRESSION >

DTHISTORY ̂)-4(T)—i •raal CHECKOPTUne —,

INITspec

tbeg) +real —

itiulpulseeheek

isisa

—)(-sssa }—j(T) 5

—}(END)—^(7)— >

•Integer

www.manaraa.com

292

SANtoodtl

)

•} FSMapao

i CFPspeo

i CFSapao

i DELPspsc

i DELSspec

i QUEspeo

i DERspec

-) CLKspeo

-) ENVspec

VARHISTspoc

EXPHISTapoc

INITspec -,

	1982
	A general purpose State Architecture Simulator for discrete systems with application in data communication protocols
	Lap-Kin Ip
	Recommended Citation

	tmp.1415296852.pdf.s8pCV

