IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1982

A general purpose State Architecture Simulator for
discrete systems with application in data
communication protocols

Lap-Kin Ip

Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
0 Part of the Electrical and Flectronics Commons

Recommended Citation

Ip, Lap-Kin, "A general purpose State Architecture Simulator for discrete systems with application in data communication protocols "
(1982). Retrospective Theses and Dissertations. 8355.
https://lib.dr.iastate.edu/rtd/8355

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8355?utm_source=lib.dr.iastate.edu%2Frtd%2F8355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

- INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is hcavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or ‘‘target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

.When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted mai:rials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of *‘sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Univgrs;’éyr
Microfilms
International
300 N. Zeeb Road

Ann Arbor, M| 48106

8307758
Ip, Lap-Kin

A GENERAL PURPOSE STATE ARCHITECTURE SIMULATOR FOR
EISCIKOEéTgngSTEMS WITH APPLICATION IN DATA COMMUNICATION
ROT

Iowa State University Pu.D. 1982

University
Microfilms
International . zeeb Roed, Ann Arvor, M14s106

PLEASE NOTE:

In all cases this material has been filmed In the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark v,

-t

© ® N o o & @ P

- ok
- O

12,
18
14,
15,

Glossy photographs orpages

Colored illustrations, paper or print___

Photographs with dark background

lllustrations are poorcopy

Pages with black marks, not originalcopy ___

Print shows through as there is text on both sides ofpage ______
Indistinct, broken or small print on several pages __t{__

Print exceeds margin requirements _____

Tightly bound copy with print lostinspine_____

Computer printout pages with indistinctprint

Page(s) lacking when material received, and not available from school or
author.

Page(s) seem to be missing in numbering only as text follows.
Two pages numbered . Text follows.
Curling and wrinkled pages

Other

University
Microfilm
International

w

A general purpose State Architecture Simulator
for discrete systems with application in

data communication protocols

by

Lap-Kin Ip

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Department: Electrical Eungineering

Major: Electrical Engineering (Computer Engineering)

Approved:

Signature was redacted for privacy.

In Charge 9f Major Work
Signature was redacted for privacy.
For7tlg MAAgr Department
Signature was redacted for privacy.

For thf Gyadfipte College
Iowa State University

Ames, Iowa
1982

I.

II.

III.

ii

TABLE OF CONTENTS

INTRODUCTION

A.

B.

C.

Formal Methods for Protocol Specification
Simulation of Protocols

Qutline of the Dissertation

SPECIFICATION OF DISCRETE SYSTEMS USING
STATE ARCHITECTURE NOTATION

A.

I.

J.

General Features

Finite~State Machine

Pulsed Combinational Function
Static Combinational Function
Pulsed Delay

Static Delay

Queue

Derivative

Clock

Environment

STATE ARCHITECTURE SIMULATOR

A.

B.

C.

D.

Overview of the State Architecture Simulator
Data Structure
Transformation

Data Input

Page

10

16

18
20
24
32
32
35
35
36
37
38

39

49
49
57
69

92

Iv.

V.

VI.

VII.

VIII.

E.

F.

APPLICATION OF THE STATE ARCHITECTURE NOTATION
AND STATE ARCHITECTURE SIMULATOR IN SIMULATING DATA

iii

Initialization

System Executive

COMMUNICATION PROTOCOLS

Operational Steps in Running SAS

A Simple Discrete System Simulation

Start-Stop Link Simulation

Advanced Data Communication Coutrol

Procedures Simulation

DISCUSSION AND CONCLUSIONS

A.

B.

c.

D.

E.

SAN and SAS Model Size
Experience with SAN and SAS
Reliability of SAS
Limitations of SAN and SAS

Conclusious

BIBLIOGRAPHY

ACKNOWLEDGMENTS

APPENDIX:

SYNTAX DIAGRAMS

STATE ARCHITECTURE NOTATION

119

128

188
188
198

230

257

265
265
266
267
269

272

273

277

278

I. INTRODUCTION

A data communication protocol is a set of regulativns goveruing the
sending and receiving of data between two or more data processing systems
such as computers, terminals, and telephone systems. A set of computers,
terminals, and other data processing systems which are interconnected to
each other is called a computer network.

The SAGE (Semi~Automatic Ground Environment) Air Defense system and
SABRE, an on=-line airline reservation system, were two of the earliest
computer networks. These early networks were one-of-a-kind systems that
were developed by experts using unique ad hoc methods to attain the
required fuuctioun.

The data communication protocols (regulations) involved in governing
the communication between computer systems in the '60s and early '70s were
defined predominantly in natural languages, e.g., Binary Synchronous
Communication (BSC), CCITT's X.21 and X.25, and the currently popular
HDLC. Validation of the protocol specification (defined in natural
languages) was done mainly by hand checking and human intuition. As a
result, ambiguities existed in the protocol specification. Errors or
differences also existed in implementation. For example, the
implemeutation of the well-known Binary Synchronous Communication protocol
in different systems by different implementors ended up with incompatible
systems which could not communicate with each other [Sussenguth 1976].

Generally, the natural language form of protocol specification

creates ambiguities in the interpretation of the protocol's exact meaning.

Thus, the protocol design cannot be validated and analyzed automatically.
Furthermore, it i1s not possible for the simulation and implementation of
the protocol system to be derived directly from the specification.

The cost/performance of both computing systems aund data communication
facilities improved significantly in the '70s. As a result, a large number
of businesses have begun using computer networks to improve their business
transactions (banking, electronic mail, air reservatiom, etc.). The
commercial opportunities and the advances in computer technology have led
the computer and communication industry to market standard network
hardware and software components. This 1s done so that the user might
build a wide varlety of application networks from a small number of
standard components. Therefore, a number of function and interface
standards were developed for these types of components. These standards
include IBM's Systems Network Architecture [SNA 1978], Hewlett—Packard's
Interface Bus [Hewlett-Packard 1975], Digital Equipment Corporation's
DECNET [Digital Equipment 1978], CCITT's X.25 [CCITT 1979] and the IEEE
Standard 488 [IEEE 1978]. However, the support tools needed in the
design, specification, simulation, validation, implementatioun, and testing
of these kinds of protocols have still been developed largely on an
informal basis. During the last ten years, a significant amount of
research has been focusing on formal methods to support the design,
specification, validation, simulation, and implementation of data
communication protocol systems. In the next section, we will examine
current formal specification and validation techniques applied im the

protocol design process.

A. Formal Methods for Protocol Specification

As understood by people in the data communication protocol area,
protocol specifications must ultimately serve several purposes including
definition, verification, simulation, analysis, implementation, and
documentation of the algorithms involved. Definition means a complete and
unambiguous written specification using a reference model. Verification
means the analysis and reliable prediction of the behavior of the system
design during the design stage (from the protocol specification) and prior
to implementation. The verification may be manual or automated.
Simulation means that a direct simulation of the protocol system can be
derived from the protocol specification. The simulation should totally
reflect the function of the design as denoted by the specification.
Analysis means that the specification should provide an analytic basis for
predicting implementation performance characteristics such as throughputs,
queue slzes, response times, and delays. Implementation means that the
specification 1s a basis for direct implementation, e.g., 1f the protocol
is specified in a programming language it can be directly compiled into a
running implementation.

In the past decade, many different formal methods have been
proposed for protocol specification. A good collection of the papers
related to this area can be found in the books (1) Communication Protocol
Modelling edited by Sunshine [Sunshine 1981], (2) Computer Network
Architectures and Protocols edited by Green [Green 1982] and (3) the

Proceedings from both the First aud Second International Workshop on

Protocol Specification, Testing, and Verification [Proceeding of the
First International Workshop 1981] and [Proceeding of the Second
International Workshop 1982].

In general, there are two main paths in the modelling
(specification) and verification of protocols [Sunshine 1978]. The
first path is based on algorithmic description of a protocol system
followed by assertion proofs and temporal logic. This path mainly uses
some kind of programming language to describe protocol systems [Bochmam
1975], [Stenning 1976] and [Hailpern and Owicki 1980]. The second path is
based on some form of state and tranmsition description of a protocol
system followed by a reachability test. This category includes the UCLA
graph [Postel and Farber 1976], Petri nets [Merlin and Farber 1976] and
[Symons 1980a], formal language [Teng and Liu 1978] and [Harangozo 1977],
and finite-state machines [Piatkowski 1975], [Sundstrom 1977], [Bochmann

1978]) and [Piatkowski 1979].

l. Programming language model

The general approach of programming languages is to describe
protocol behavior by writing a program or algorithm in some programming
language. Programming languages are well-known and there is little in
the specifications themselves to arouse interest.

This approach is straightforward. It 1s easily understood by
those who have a programming language background. Assertion methods are

usually used to test certain invariants existing in the protocol.

Recently temporal logic has been employed to validate protocols
specified in programming languages [Hailpern and Owicki 1980].

On the other hand, programming language approaches tend to ianclude
implementation details which are overly constraining. The sequential
nature of programming languages hides the concurrent nature of the
protocol. Furthermore, the state of the protocol system is hidden in
the value of the program variables and the stopping places within each

program, which makes the validation process more difficult.

2. State tranmsition model

The general approach of state transition models is to describe the
input and output sequence of a protocol system together with an internal
system state variable, which identifies the status of the current input
history. Even though many of the concepts underlying the various state
transition models (UCLA graph, Petri net and a finite-state machine
approaches) are similar, the notations used for each method is quite
different.

UCLA graphs and Petri nets notation are similar. Petri net models
are represented by a directed graph with nodes and tramnsition bars. The
holding of a condition of a protocol system is represented by placing a
token in the node. If all the nodes (conditions) input to a transitiom
bar (event) have tokens, then a transition bar (event) can fire (occur).
In this approach, the condition represents both the state and the input
of a protocol system, and the event represents the state transition and

the generation of new outputs of a protocol system. Diaz [Diaz 1982]

glves a summary of the evolution of a simple Petri net to different
sophisticated Petri nets such as Place-colored net, Predicate~transition
net, Predicate—action net, Numerical Petri net and Timed net and their
applications in modelling different protocols.

Finite state automata theory was one of the earliest techniques
used to model protocols.. A finite state automaton or finite-—state
machine is a system consisting of five well~defined entities s, X, Z,
FNS, FOUT

vwhere S is a finite set of states;

X is a finite set of inputs;
Z is a finite set of outputs;
FNS is the next stat function;
FOUTS is the output function.

As mentioned by Sunshine [Sunshine 1981], the notion of a machine
which reacts to inputs and produces appropriate outputs is a natural and
intuitive way to view the functioning of a protocol machine. The inputs
to a protocol machine represent commands from a local user, messages
from a remote protocol machine, or internally generated events such as
timeouts. The protocol machine changes its state and generates outputs
appropriately after each input so that subsequent inputs will be
processed correctly. The outputs of a protocol machine represeat
messages sent to the local users and remote protocol machines.

Early works in using the finite-state machine transition diagram to
model protocol can be found in papers by Bjorner [Bjorner 1970} and

Kawashima et al. [Kawashima et al. 1971]. In these early works, a single

finite—-state machine transition diagram is used to represent the global
states of the protocol system. However, for a protocol of any complexity,
the number of states and transitions becomes unworkably large. To solve
this problem, the idea of coupled—-machines was introduced, in which the
protocol system is subsequently decomposed into an interconnection of
smaller independent finite—state machines. Models of this category can be
found in papers by Piatkowski [Piatkowski 1975], Bochmann [Bochmann 1978],
Gouda and Manning [Gouda and Manning 1976] and IBM's SNA Format and
Protocol Reference Manual [SNA 1976].

When a protocol using a sequence number is modelled, such as the data
transfer phase of the CCITT X.25, there must be different states and
transitions to handle each possible sequence number. In this case, the
states of the finite-state maéhine can become very large depending on
the range of the seqhence number to be modelled.

To solve this problem, researchers attempt to combine the
advantages of state transition models and program languages to develop a "
hybrid model for protocol representation. The hybrid model usually
employs a state transition model to capture the control state of a
protocol such as the call establishment phase of X.25 and uses the
program variables and algorithms in each major state to process incoming
messages with numerical value. A typical hybrid model is the HDLC model
developed by Bochmann and Chung fBochmann and Chung 1977]. Otﬁér hybrid
models can be found in papers by Danthine and Bremer [Danthine and Bremer
1978], Schultz et al. [Schultz et al. 1980] and Alfonzetti et al.

[Alfonzettl et al. 1979].

3. Limitations

As for the above mentioned state transition techniques, Petri nets
and finite-state machines are both widely used by different researchers.
However, most of the models developed today are geared toward
validation, especially the various Petri net approaches. Petrl nets can
be used to valldate the correctness of certain kinds of communication
protocol through some algorithms and assertions [Symons 1980b]. The
models so far developed using Petri nets seem very large and hard to
understand [Diaz 1982]; this seems to indicate that Petri nets are not
well-suited as a specification tool. One reason is that a Petri net does
not reveal explicitly the global state of the system, rather its markings
do.

Even when finite—state machines are used, most of the models do not
have detailed information concerning interconnections and valid
input/outpﬁt values to provide a guideline (documentation) for direct
simulation and implementation.

Programming languages do meet the need as a document for direct
simulation and implementation. However, the sequential nature of
program execution, which is over constraiﬁing, is undesirable.
Concurrent programming languages and programming languages with monitor
capability may eliminate the sequential constraint, but such kinds of
models are not in the current literature.

In the next section, we will propose a formal specification

language for protocol systems. The language will preserve the

concurrent nature of a protocol system and at the same time can be used

as a specification for direct simulation and implementation.

4. Overview of the SAN specification

As was mentioned, the objectives of formal methods in protocol
specification include definition, verification, simulation, analysis,
implementation and documentation. The SAN specification described in
this thesis meets all of the above objectives as discussed below.

The SAN specification approach was begun by Piatkowski [Piatkowski
1975] while he was at work in IBM where he employed the state architecture
oriented method to specify the function and architecture of IBM's Systems
Network Architecture (SNA). The SAN mentioned in this thesis is an
extension of the original SAN.

The SAN approach can be regarded as a hybrid method. It employs
classical finite-state machines and combinational functions to capture
the global states of the protocol system. Since some of the aspects of a
protocol system's behavior cannot be modelled by finite-state machines, a
number of additional primitive compounent types such as the delay, FIFO
queue, derivative and clock were introduced in SAN. Also a special
component type, environment, was introduced in SAN to allow an arbitrary
PASCAL procedure to define the function of a component. These primitive
component types have been shown to be useful in building protocol system
models.

As far as the six protocol specification objectives are concerned,

the precise definition of all compoments' input and output values, their

10

interconnections, and their transitions provide a complete and unambiguous
written specification for the protocol. Even though computer tools for
validation and analysis of SAN specifications have not been developed, we
conjecture that the common verification methods such as reachability
testing, assertion and temporal logic proofs can be used on SAN
specifications. All of the above methods were related to the testing of
the system state variables either by checking the invariants of the state
variables or exhaustly driving the system to land in all possible values
of the state variables.

A SAN model can also be used as a direct simulation model. In
other words, a direct simulation can be autométically derived from the
SAN model. Additionally, a partial or maybe fully automatic implementor
could be built to generate different implementations of the SAN
specification. Finally, the SAN specification augmented with natural
language descriptions can be used as a document for a protocol system.
The SAN specification is used for accurate and precise commuunication
among many groups of people (designers, implementors and maintainers,
etc.). The natural language description helps to explain the difficult

concepts of the protocol, which may be difficult to understand in reading

the SAN specification.

B. Simulation of Protocols

One of the objectives of protocol specification is to derive a

simulation of the protocol system directly from the protocol

11

specification. This dissertation describes an investigation of the State
Architecture Notation (SAN) and the State Architecture Simulator (SAS), a
simulator driven by the SAN specification.

Though simulation cannot be used to test out a design completely,
it is a good tool for a designer to check out the behavior of a design.
This informal method allows a.designer to observe the exchange of input
and output sequences of the simulated system, which is very valuable in
informal design validation. The ability of the simulator to simulate
different levels of abstraction of protocol systems allows designers to
check out the design of subsystems. A simulation model can also be used
to predict the performance of protocol systems in different environments.
If a simulation model exactly reflects the design of a protocol system
written in some formal specification (like SAN),'the simulation model can
help the user to interpret the meaning of the formal specification by
exercising the simulation model. In other words, the formal specification
together with the simulation model can be used as a reference model for
the protocol system. _ «

The general approach to building a protocol simulation model in a
computer is first to analyze and understand the concept and design of
the protocol system, second to formulate a conceptual model according to
the level of abstraction desired and third to translate the conceptual
model to some computer executable language representation. Two different
types of computer languages have been widely used by researchers.

First is the use of general purpose programming languages such as

FORTRAN, PASCAL, PL/1l, ALGOL, etc. For example, IBM uses PL/l as a base

12

language to represent the SNA protocol [SNA 1978] and also uses the PL/1
language representation as a simulation tool to verify protocol designs.
Yeh [Yeh 1979] demonstrates the "systematic model construction
/validation and incremental modelling” approach by simulating HyperNet
via a process oriented language called ASPOL.

Second is the use of general purpose simulation languages such as
SIMSCRIPT II, SIMULA, GPSS, GASPIV, etc. For example, Remes [Remes
1978] developed a GPSS model for simulation of multidrop lines. Also,
many business institutions have developed their own network simulation
packages, for instance, NCR Comten's Link Evaluation Model and Discrete
Simulation Model which is intended for simulation studies of networks
of Comten's products (implemented in FORTRAN).

In general, using general purpose programming languages or
simulation languages to simulate protocol systems suffers from two weak
points. Firstly, the translation from prose specification or even
formal specification to the specified language may introduce errors.
Secondly, it takes a lot of time and effort to code from the
specification into the target language. As for the network simulation
packages developed in business institutions, most of them are too
restricted to thelr specific applications. Further, most of the
simulation packages are not available to the public.

In order to relieve the designer's burden to translate the protocol
model (specification) to a specific language to form a simulated system
and at the same time to enjoy the benefits of using simulation to

facilitate the design process, we propose a formal language for the

13

representation of protocols, namely the State Architecture Notatiom
(SAN). We have developed a general purpose simulator, namely the State
Architecture Simulator (SAS), to execute system.models represented in
SAN.

Different formal methods for protocol specification and their pros
and cons have been discussed in the previous section. Some of the formal
specifications have a simulator to execute the system models represented
in those specifications. The SARA GMB simulator (System Architect's
Apprentice Graph Model of Behavior simulator) [Gardner 1977] and [Razouk
and Estrin 1977] developed at UCLA and IBM's SNA written in the IBM SNA
Format and Protocol Language (FAPL) are examples. Furthermore, the CCITT
Specification and Description Language (SDL), which is still under study,
is also aimed to provide a formal executable specification language for
communication protocols [Rockstrom and Saracco 1982].

The SARA GMB simulator together with GMB translator and PL/1
preprocessor (PLIP) provides the user the capability to execute UCLA
graph models and to examine or modify the state of the control and data
graphs of the model during a simulation. From the machine readable
speclfication of the control and data graph models, the GMB translator
creates lanternal data representation of the control and data graphs.

The PL/1 preprocessor takes the PL/l-like code in the processor and
generates the corresponding PL/l code properly interfaced to the
simulator. The simulator executes the control graph, which models the

different synchronization and mutual exclusion of processes. The

14

simulator provides the designer the capability to conduct interactive
experiments on behavioral models during the design process.

The SARA GMB simulator together with some analytical tools provides
a good base to use in designing and testing out a protocol model.

However, as noted by Postel and Farber [Postel and Farber 1976], the graph
becomes fairly complicated for any practical protocol.

As for IBM's SNA, 1t was first proposed by Piatkowski [Platkowski
1975} to represent the SNA protocol modules by interconnections of
finite-state machines and combinational functions. The function of each
finite—-state machine and combinational function is realized in a
combination of graphical, matrix and tabular representation as appeared
in the first edition of the IBM's SNA Format and Protocol Reference
Manual [SNA 1976]. 1In the Second edition of the IBM's SNA Format and
Protocol Reference Manual [SNA 1978], most of the matrices and tables were
translated into PL/l like procedures and some other FAPL statements. A
translator was built within IBM to translate the FAPL statements into PL/1
statements, so that the SNA specification can be executed. The executable
representation of the SNA data flow control layer has been tested by an
automated protocol validation technique [Schultz et al. 1986].

The State Architecture Simulator (SAS), discussed in this
dissertation, is built to execute system models represented in the SAN
specification language. The reason for choosing, SAN language was
explained in the previous section.

One of the purposes of building SAS is to provide a teaching tool

in formal protocol design at Iowa State University. Students will be

15

able to conduct interactive experiments on protocol designs based on the

SAN language. The SAS, will have the following properties:

L)

2)

3)

4)

3)

It is an interactive system. Users can assign inputs and
observe outputs at their terminals. Users can insert break
points in the simulated system so that they can examine the
system status and assign new inputs at the break point.
Programmable system input modules, both algorithmic and
random, can be defined in the simulator to allow users to

do both algorithmic and random testing for a long period of
time.

It has the capability of data collection by tracing the system
variables during simulation.

It provides some system logic checking during simulation; for
instance, it checks 1) if there is any input change of a
component, while the compoment is busy processing a previous
input; 2) if the input and output values of a component are
elements of the predefined input and output sets, etc.

It has a restart initialization process to allow users to
continue a simulated system execution from the state where it

stopped in a previous run.

The above properties will make SAS a useful tool in demonstrating

and validating protocol systems during their design stages.

16
C. Outline of the Dissertation

This dissertation is divided into five main chapters. The first
chapter is the introduction.

The second chapter presents the syntax and semantics of the machine
readable form of the State Architecture Notation (SAN), a language for
specifying models of protocol systems. There is a compatible graphical
version [Platkowski 198l1]. Protocol systems are modelled by specifying an
interconnection of the nine basic components defined in SAN: finite-state
machine (FSM), pulsed combinational functioun (CFP), static combinational
function (CFS), pulsed delay (DELP), static delay (DELS), queue (QUE),
derivative (DER), clock (CLK), and envirounmeant (ENV).

The SAN language discussed in this dissertation was first proposed by
Professor Piatkowski and was refined by us in the process of developing a
State Architecture Simulator to execute the protocol models specified in
SAN language.

The third chapter presents a detailed description of the design and
the implementation of the State Architecture Simulator (SAS) which has
been developed over the last three years by the author. SAS contains
two PASCAL programs and a VAX command proceduré that compiles, executes
and reports on simulations of user supplied SAN specification of
protocol systems. It was developed and is running on a VAX 11/780 at
Iowa State University using the VAX VMS V2.0 operating system. SAS
accepts SAN specifications of protocol systems as inputs an& executes

the simulated system. SAS is an interactive system allowing users to

17

examine the system status, to assign inputs and save system status at a
terminal.

The fourth chapter presents the application of SAN and SAS to
simulate some specific data communication protocol examples. The
operationai steps involved in creating and running an SAS executable
simulated system from the SAN model are first described and then
followed with a simple example to demonstrate the above steps. A second
example demonstrates the use of all the different kinds of basic
components and the trace utilities via a simulation of a Start-Stop
link. A third example illustrates the use of SAN and SAS in simulating
a fairly complicated data communication protocol, namely Advanced Data
Communication Control Procedures (ADCCP). The ADCCP SAN model and the
SAS runs were developed over the past year at Iowa State University by
Mr. Dayun He, Visiting Scholar from the Research Institute of Posts and
Telecommunications of the People's Republic of China.

The fifth chapter evaluates the pros and cons of SAN and SAS and
discusses some of the possible ways that SAN and SAS can be improved to
facilitate the simulation process. Finally, the contributions of the

SAN and the SAS in the protocol design process are presented.

18

II. SPECIFICATION OF DISCRETE SYSTEMS USING STATE
ARCHITECTURE NOTATION

In this chapter, we present the machine readable form of the State
Architecture Notation (SAN). Users interested in a more detailed treat-
ment of the conceptual basis for SAN or in the detalls of the graphical
version may refer to papers by Piatkowski [Piatkowski 1975] aund
[Piatkowskil 1981]. Part of the materials appearing in this chapter have
been presented in a paper by Piatkowski, Ip and He [Piatkowski et al.
1982].

The purpose of the SAN is to allow users to represent discrete
systems in a formal and machine readable specification. The basic
approach in defining a complicated discrete system is to decompose the
system, through a series of successive refinements, into a well-defined
interconnection of smaller systems called components. After the
desired level of system decomposition has been structurally described,
the behaviors of the components are defined independently.

Each component in a SAN system model has a unique name and a set of
pulsed and static input and output streams

XP.1,XP.2,...3XS.1,XS.2,...32P.1,2P.2,,...25.1,25.2,...
as shown in Figure 2.1.

We can reference a particular input or output of any specific
component using PASCAL-1like qualification (é.g., name.cxp+3).

Each component operates in asynchronous discrete time with the
pulsed variables being defined only at discrete times and the static

variables changing only at discrete times.

19

Ny
——1 XP.1 lP.1 T
-1 XP.2 ZP.2

[] ®

® []

° name o
—1 XS.1 ZS.1 pF———a—
————1 x5.2 25.2 p——m—

[]]

®

R]

Figure 2.1. Overview of the input/output structure of a general
component

20

A general SAN system model is built up as an interconnection of
specific instances of nine types of basic componeunts, namely:
finite-state machine (FSM)
pulsed combinational function (CFP)
static combinational function (CFS)
pulsed delay (DELP)
static delay (DELS)
queue (QUE)
derivative (DER)
clock (CLK)

environment (ENV).

A. General Features

Before we describe the detailed specification of each kind of
component, we want to describe the special symbols, the variables, and
the general features used in the SAN specification.

As an aid to clear exposition, all occurrences of special symbols
in SAN will be underlined in this chapter. In the actual use of SAN, the
underlining is not used. Also, the special symbols are confined to either
upper case or lower case as they appear. A list of the speclal symbols
used in SAN is shown in Figure 2.2, Readers may find it helpful when
reading this section to glance ahead to the examples in Chapter IIL.B and
Chapter IV.

In the SAN specification, the following variable values are treated

as arbitrary alphanumeric strings: name, state, input, output, cs, uts,

Symbots

CFP

CFS

CHECKOPT

CLK
closedempty
closednotempty
CONDITION

cs
cxp. |
cxs, |
defsinit
deftclk
deftdel
deftdeq
deftenqg
deftexec
defzsinit
DELP

DELS

deq

DER
DTHISTORY
ENV
everysvent

everytimechange

EXPHISTORY

expired

Figure 2.2,

21

Meanings

pulsed combinational function
static combinational function

denotes when the traces of variables are to be recorded
clock

a control state of a queue

a control state of a queue

a PASCAL hoolean expression denoting when the traces of
variables will be recorded

current state of a local caomponent
i th currant pulsed input of a local component
{ th currant static input of a local component
default initial state

default timeout period of a clock

default delay time

default execution time to dequeue data from a queue
default execution time to store data in a queue

default execution time

default initial values of static outputs

pulsed delay

static delay

deguete control pulse

derivative

time interval at which traces of variables are recorded

environment

the STARTEXP will be evaluated after every simutated esvent

the STARTEXP will be evaluated whenever the current
event set in the event file is empty

instance for tracing the value of a boolean expression

a control state of a clock

Lists of special symbols in SAN

FXPRESSTON
FNS

FouTp
FouTts

FROM

FSM
FUNCTION

INIT

intertaced

list

mulpul secheck

never
open
procedure

regular

reset
running
S

start
STARTEXP

STARTEXPCHECK
tbeg

tend

terminal
timeout

T0

VARH | STORY
VAR |ABLES

Figure 2.2.

22

n hoolean azprassion

next state function

pulsed output function

static output function

precedes source name iist for an input stream

finate~-state machine

delimits the beginning of the specification of the
function of an ENV

indicate the beginning of an initialization instance

denotes that sources and destinations of all inputs and
outputs are given within the component specification

list option

indicates whether multiple simul taneous pulsed inputs
to single components are trapped or not

the STARTEXP will never be evaluated
a control state of a queue

procedtire option

attribute of a trace; denotes that variables are recorded
at regular time intervals

a control state of a ciock; a contro! input of a clock
a control state of a clock

state set

a control state of a clock

a PASCAL boolean expression denoting when the ENV will
be scheduled

denotes when the STARTEXP of an ENV is to be evaluated
simuiation beginning time

simulation ending time

terminal option

a control output from a clock

precedes destination name list for an output stream
instance for tracing variables

introduces set of variables to be traced

(continued)

23

XP pulsed input set

XS static input set

zpP pulsed output set

Zs static output set

* don'tcare

- the null or empty puised signal

=> an implicator separating cs, xp's, and xs's from nts, ntzp's
and ntzs's

/ a right slash separating cs, xp's and xs's

. period, a SAN delimiter

: colon, a SAN delimiter

; semi-colon, a SAN delimiter

> comma, a SAN delimiter

Figure 2.2. (continued)

24

Xp, ¥s, zs, ntzp, and ntzs. Upper and lower case characters can be used
for the strings; however, they are inﬁerpreted as different characters.
In any case, the strings cannot be longer than forty characters.

The following dummy variables used in this chapter must be
iategers: 1, j, k, 1, m, n, q, s, U,

The following variables must be a non—negative real or integer:
Texec, Tdel, Tenq, Tdeq, Tclk.

As far as the order of specifying each kind of component is
concerned, SAN allows any sequence in placing the components. However,
the specification of the connectiéns and functions and other parameters
within each component are confined to a certain sequence and format. The
detailed syntax diagram of each component in SAN is shown in the Appendix.

Throughout the use of SAN, any syntax question should be answered by

referring to the Appendix.

B. Finite-State Machine

Each instance of a basic component type in a SAN system model is
described in structured machine readable form. Figure 2.3 presents the
general format fo; specifying a finite~state machine in SAN; we will
look at it first since it is the most complicated and in most systems
the most important type of system component to be used.

In the first line of the specification, the FSM compouent type is

declared and the unique component name given. All components in the

current version of SAN are lnterlaced, meaning the sources and

25

FSM name : interlaced
§ : state, state,... ;
defsinit : state;

"input, input,...

FROM name.ZP.i H
input, input,... ;

.1
.2 FROM name.ZP. §

<115

FROM name.2S.k : input, input,...;
name.Z2S.1 : input, input,...;

. . EslEs
101
y
=
o
=

ZP.1 TO name.XP.m, name.XP.n,... : output, output,.., ;
2P.2 TO name.XP.p, name.XP.q,... : output, output,... ;
28.1 TO name.XS.r, name.XS.s,... : output, output,... ;
28.2 TO name.XS.t, name.XS.u,... : output, output,... ;
FNS : list

¢s / xp.1, xp.2,... / xs.1, xs.2,.., => ats
¢s / xp.l, xp.2,... / xs.1, %s.2,... => nts

END;
FOUTP : list
es / xp.1l, xp.2,... / xs.1, xs.2,... => ntzp.l, ntzp.2,...
es / xp.1l, xp.2,... / xs.1, xs.2,... => ntzp.l, ntzp.2,...
END;
FOUTS : list
¢s => ntzs.l, ntzs.2,... ;
cs => ntzs.l, ntzs.2,... ;
END;

deftexec : Texec;

END;
Figure 2.3. Finite-state machine specification format

26

destinations of all input and output variables are given within the
component specification.

Next we enumerate the finite state set, S, and specify the default
initial state, defsinit.

Following this, we list in order for each pulsed and static input
and output stream the respective source and destinations and an
enumeration of stream variable values.

For both pulsed and static input, users first specify the local
input (XP.n or XS.n), then follow with FROM, the external source name
(name.ZP.m or name.ZS.m), and the valid set of input values. Their
formats are as follows:

XP.n FROM name.ZP.m : input,=--,input;

XS.n FROM name.ZS.m : iaput,=--,input;

For both pulsed and static output, users first specify the local
output (ZP.m or ZS.m), then follow with TO, the external destination
names (name.XP.n or name.XS.n), and the valid set of output values. The
brackets appearing in the following format mean that multiple

destinations, with a maximum of twenty, are allowed. Thelr formats are as

follows:
ZP.m TO name.XP.n [,====] : output,--—,output;
Z8.m TO name.XS.n [,=-===] : output,---,output;

If the input or output of a component is not counected to any
component, the unconnected input or output is specified as follows:
XP.n UNCONNECTED : dinput,--=-,input;

XS8.n UNCONNECTED : dinput,=---,input;

27

ZP.m UNCONNECTED : output,—-—-,output,

ZS.m UNCONNECTED : output,-——,output;

Having defined the scope of the state set and the I/0 sets, we now
specify the next state function (FNS), the pulsed output function
(FOUTP) and the static output function (FOUTS). Figure 2.3 illustrates
these functions defined using the list format; i.e., the functions are
defined by listing specific combinations of current state (cs), pulsed
inputs (xp's) and static inputs (xs's) followed by the associated next
state (nts), pulsed outputs (ntzp's) or static outputs (ntzs's). The
cs, xp's, and xs's are separated by a right slash, '/'. Within each set
of inputs, each input element (Xp or xs) is separated by a comma and the
input elements are arranged in an ascending order with xp.l or xs.l
appearing first. There is an implicator, ‘'= ', separating cs, xp's and
xs's from ats, ntzp's and ntzs's. The number of xp, xs, ntzp and
ntzs elements are equal to the number of pulsed inputs, static inputs,
pulsed outputs and static outputs of the component.

The general format of a FNS list entry is as follows:

cs/xp.1l, xpe2,~~=,xp.n/x8.1,X8.2,~=~,X5.m = nts;

The general format of a FOUTP list entry is as follows:

cs/%xpel,xpe2,~== Xp.n/xs.l,xs.2,-=-xs.m = untzp.l,ntzp.2,-~-ntzp.i;

The general format of a FOUTS list entry is as follows:

cs = untzs.l, ntzs.2,----, ntzs.]j;

Beside using regular alphanumeric strings in the line entries of

FNS, FOUTP, and FOUTS, the following options can be used:

28

* (don't care), in any cs, xp, xs position
- (null or empty), in any xp or ntzp position
cs, cxp.l or cxs.i in any nts, ntzp or ntzs position.

In the case where the list format for specifying FNS, FOUTP, or

FOUTS is cumbersome, the procedure option may be used. The procedure

option when used to define FNS, FOUTP, or FOUTS of a compounent, except

in ENV component, is a restricted PASCAL procedure. The procedure may
refer only to the current state'and inputs (cs, cxp.n, cxs.m) local to
the components, and assign values to the next state and outputs (unts,
ntzp.i, ntzs.j) local to the component. The local component name is not
used in the prefix of references to these variables. To define a
procedure, the word procedure has to be written following the name of a

function (FNS, FOUTP or FOUTS) and a colon. In the next lines, a set

of statements can be written to represent the procedure functioms. The
details of the statements® syntax can be seen in the syntax diagrams
in the Appendix. An END and a semicolon are appended after the last
statement to indicate the end of the procedure.

The following is an example SAN specification of a flip-flop, named
Flipflop, using a FSM component. The inputs and outputs of the flip-
flop are connected to two fictitious components, namely Soﬁrce and

Destination, as shown in the following block diagram.

Source xp.l xp.1l zs.l xs.1
0,1(p) 0,1(s)
Flipflop Destination

29

The flip-flop has two states, O and 1. It has a binary pulsed input and
a binary static output. The current state of the flip-flop remembers the
last pulsed input, and the curreat static output 1s a direct mapping of
the current state. The SAN model of Flipflop is shown in Figure 2.4.
Notice in the SAN model of Flipflfop, the static input, XS.n, the pulsed
output, ZP.m, and the pulsed output function, FOUTP, are missing.
Actually, the SAN supports partial specification of different types of
components. The detailed syntax for representing each type of component
can be seen in the Appendix.

As far as the options used in the line entries of FNS, FOUTP and
FOUTS are concerned, the FNS line entries in Figure 2.4 can be improved
by using the don't care symbol, '*' and the current state and input

variables. The improved FNS is as follows:

FNS : 1list
*/% = cxp.l;
END;
The next state (nts) will be equal to the current pulsed input
(cxp.l) regardless of the current state and current pulsed input value.
On the other hand, the FNS can be specified via a procedure such as
follows:
FNS : procedure
If cxp.l='0' then nts:='0"
else
if exp.l="1' then ntsg:='l';

END;

30

FSM Flipflop : interlaced
$:0,1;
defsinit : 0;
XP.1 FROM Source,ZP.1 : 0,1;
ZS.1 TO Destination.XS,1 : 0,1;

FNS : list
0/0 => 0;
0/1 => 1;
1/0 => 0;
1/1 => 13

END;

FOUTS : Iist
#* => cs;

END;

deftexec : 0.0;
END;

Figure 2.4. SAN model of Flipflop

31

or an improved procedure specification

FNS : procedure
ats:=cxp.l,

END;

The above four different FNS specifications are equivalent to each

other.

They demonstrate the use of the don't care '*' and current input

variables in the list optiom, and also the use of the procedure option.

In general, a FSM operates as follows:

1)

2)

3)

In the absence of a pulsed input, the FSM stays in its current
state, producing a counstant static output according to FOUTS(cs).
When one (or several simultaneous) pulsed input(s) arrive at
the FSM, the machine becomes busy for the time interval Texec,
prescribed in deftexec, the default time of execution. When
the busy interval ends the machine assumes the next state, uts,
specified by FNS (cs, xp, xs) and pulses the outputs according
to FOUTP (cs, xp, x8). As a consequence of changing the current
state, the static outputs of the machine may also change.

In interpreting the list representation of a FNS, FOUTP or
FOUTS function, the list is scanned from the top to the bottom
line entries. The first line entry that matches with the
current state and inputs (cs, Xp, x8) 1s used to map into the
correspondinig next state and next onputs (nts, ntzp, ntzs);
and, the rest of the line entries are ignored. In case none of
the line entries matches, there is no pulsed output nor any

change in the state or the static outputs of the component.

32

4) The arrival of a pulsed input at a busy FSM is interpreted as a

system execution error.

C. Pulsed Combinational Function

The format for specifying a pulsed combinational function (CFP) in
SAN 1s presented in Figure 2.5. Conceptually, a pulsed combinational
function is a finite—state machine with one—-state and no static outputs;
the state variable is conveniently suppressed in the SAN representation

of a CFP. The operation of a CFP is similar to that of a FSM.

D. Static Combinational Function

The format for specifying a static combinational function (CFS) in
SAN 1s presented in Figure 2.6.

A static combinational function accepts only static inputs, as a
function of which it produces only static outputs. In response to a
changing input, the CFS becomes busy for the time interval specified in
deftexec. When the busy interval ends the function changes, its outputs
as specified by FOUTS(xs).

The default (initial) values of all static outputs are given in

defzs.

The changing of an input at a busy CFS is interpretted as a system

execution error.

3

CFP name : interlaced

.1 FROM name.ZP.i : input,
.2 FROM name.ZP.j ; input,

5515
- 'givo

FROM name.ZS.k : input,
FROM name.ZS.1 : input,

. I
Ty

3

input,... ;
input,... ;
input,...;
input,...;

ZP.1 TO name.XP.m, name.XP.n,... : output, output,... ;
ZP.2 TO name.XP.p, name.XP.q,... : output, output,... ;
FOUTP : list
xp.l, xp.2,... / xs.1, xs.2,... => ntzp.l, ntzp.2,...
xp.1l, xp.2,. / xs.1, xs.2,... => ntzp.l, ntzp.2,...
END;

deftexec : Texec;

END;

Figure 2.5. Pulsed combinational

function specification format

o
H

Pamerene

34

CFS name : interlaced

X5.1 FROM name.ZS.k : input, input,...;
XS5.2 FROM name.ZS.1 : input, input,...;
Z5.1 TO name.XS.r, name.XS.s,... : output, output,... ;
25.2 TO name.XS.t, name.XS.u,... : output, output,... ;

FOUTS : list

xs.1l, xs.2,... => ntzs.l, ntzs.2,... ;
xs.l, xs.2,... => ntzs.l, ntzs.2,... ;
END;
defzsinit : 2s.1, 2s.2,... ;

deftexec : Texec;
END;

Figure 2.6. Static combinational function specification format

DELP name : interlaced
XP.1 FROM name.ZP.i : dinput, input,... ;

ZP.1 TO name.XP.m, name.XP.n,... : output, output,... ;

. deftdel : Tdel;

END;

Figure 2.7. Pulsed delay specification format

35
E. Pulsed Delay

The format for specifying a pulsed delay (DELP) is presented in
Figure 2.7.

A pulsed delay hés a single pulsed input and a single pulsed output
and a constant delay time, Tdel, specified in deftdel. A DELP operates
to make

zp.1l(t) = xp.1(t - Tdel)

A DELP 1is an idealized function; it is never busy and can store an
arbitrarily large number of inputs in a finite time interval. The

initial state of a DELP is that of being empty.

F. Static Delay

The format for specifying a static delay (DELS) is presented in

Figure 2.8.

A static delay has a single static input and a single static output
and a constant delay time, Tdel, specified in deftdel. A DELS operates
to make

zs8.1(t) = xs.1(t - Tdel)

A DELS 1s an ldealized function; 1t is never busy and can store an
input that changes an arbitrary number of times in a finite time

interval. The initial state of a DELS is that of a constant equal to

the initial input.

36

cad

DELS name : jinterla

XS.1 FROM name.ZS.k : input, input,...;

ZS.1 TO name.XS.

defzsinit : zs.1 ;

deftdel : Tdel;

END;

r, name.XS.s,... : output, output,... ;

Figure 2.8. Static delay specification format

G. Queue

The format for specifying a queue (QUE) is presented in Figure 2.9.

QUE name : interlaced

XP.1 FROM name.ZP.i : input, input,... ;

XP.2 FROM name.ZP.j : deq;

ZP.1 TO name.XP.k, name.XP.l,... : output, output,... ;

28.1 TO name.XS.m, name.XS.n,... : open, closedempty, closednotempty;

deftenq : Teng;

deftdeq : Tdeq;
END;

Figure 2.9. Queue specification format

A queue has a sing

for which the user enum

le data input and output streams (XP.l and ZP.l)

erates ldentical sets of signal values.

Additionally, a queue has single control input stream (XP.2) and output

37

stream (2S5.1). The static control output indicates in which of the three
control states the queue resides. A queue operates as follows:
1) If a pulsed data input arrives at an open queue, it pulses

~ the data out and goes to the closedempty control state.

2) 1f a pulsed data input arrives at a closed queue, it stores the

data in FIFO order and assumes the closednotempty control

state.

3) 1If the deq control input arrives at a closednotempty queue, the

oldest stored data is dequeued and pulsed out. If no more data
items remain in the queue, the control state becomes

closedempty.
4) 1If the deq control input arrives at a closedempty queue, the

queue assumes the open control state; no pulsed output is

produced.
5) There are two independent busy time intervals, Tenq and Tdeq,
associated with queue operation. These limit rates at which

successive data inputs and control deq's can be validly imposed

on the queue.

H. Derivative

The format for specifying a derivative (DER) 1s presented in Figure
2.10.

A derivative has a single static binary input and a single pulsed
output. A DER detects rising and falling edges in the static input and

pulses out r and f as appropriate. A DER is an idealized function; it

38

is never busy and can respond to an arbitrarily large number of edges in

a finite time interval.

DER name : interlaced

0, 1 (or h’ _l);

XS.1 FROM name.ZS.i :

ZP.1 TO name.ZP.j, name.ZP.k,... : r, £f;

END;

Figure 2.10. Derivative specification format

I. Clock

The format for specifying a clock (CLK) is presented in Figure

2.11.

CIK name : interlaced

XP.1l FROM name.ZP.i : reset, start;

ZP.1 TO name.XP.j, name.XP.k,... : timeout;
ZS.1 TO name.XS.1l, name.XS.m,... : reset, running, expired;

deftclk : Tclk;

END;

Figure 2.11. Clock specification format

39

A clock is a controlled timer with a fixed timeout period, Tclk,

specified in deftclk.
A clock has a single pulsed control input and a pulsed and a static

control outputs. The static control output indicates the countrol state

of the clock; it has two stable states, reset and expired. The reset
input always drives the clock into the reset control state. The start
input alw;ys initializes the timer function of the clock and puts it in
the running control state. I1f allowed to run to completion, (i.e., not
started or reset in the Tclk time interval since the last start) the
clock pulses out a timeout and assumes the expired control state.

A CLK is an idealized function; it is never busy and reacts

instantly to control inputs.

J. Environment

The environment component type gives the system designer or
simulation user the freedom to name and connect—in a component whose
behavior 1s not easily (if at all) specifiable as an instance of one of
the eight basic component types already described. Two versions of ENV
are specifiable in SAN:

terminal, which allows the simulation operator to counect into

the system as a component during simulation execution tﬁrough his

terminal; when an ENV of this type 1s executing, the operator uses

the on-line Terminal Mode Command Language (described in the next
section) to interactively query the status of thg global system,

change the values of ENV parameters, store profiles of system

40

variables, set ENV output variables and schedule future ENV

executious.

rocedure, which allows the user to define the component operation
via a general PASCAL procedure; in such a procedure the user may
access all the system variables by global name references and may
introduce new variables local to the ENV; the procedure can also
invoke the functions of the on-line Terminal Mode Command Language

by appropriate calls to built in monitor procedures..

The format for specifying a terminal ENV is presented in Figure
2.12. The ENV is named; the ranges and connections of all input and
output variables are enumerated; the ENV type (terminal) is declared;
the default (initial) values of all static outputs are given in defszinit.
The busy time interval length, Texec, is specified 1n deftexec. Whether
multiple simultaneous pulsed inputs to this single ENV component should be

trapped is specified by assigning true or false to mulpulsecheck.

The ENV will be scheduled for execution during a simulation rum
when one of the following conditions occurs:

--a pulsed 1nput arrives at the ENV.

—--the boolean expression given in STARTEXP evaluates to true. The
boolean expression is provided by the user and can involve some
of the global system variables as described in the syntax diagram
in the Appendix; the boolean expression is evaluated and tested by

the simulator during execution at the times specified in

41

ENV name : interlaced

.1 FROM name.ZP.i : input, input,... ;
.2 FROM name.ZP.j ; input, input,...

-

515
- ol

.

FROM name.ZS.k : input, input,...;
FROM name.ZS.1 : input, input,...;

. |51es
T e

ZP.1 TO name.XP.m, name.XP.n,... : output, output,... ;
2P.2 TO name.XP.p, name.XP.q,... : output, output,... ;
25.1 TO name.XS.r, name.XS.s,... : output, output,... ;
4S5.2 TO name.XS.t, name.XS.u,... : output, output,... ;

FUNCTION : terminal;

{ alternatively, FUNCTION : procedure

. PASCAL procedure ...
END ; }
defzsinit : zs.1l, 2zs.2,... ;
deftexec : Texec;

mulpulsecheck : boolean ;

STARTEXP : boolean expression ;

STARTEXPCHECK : never (or everytimechange or everyevent);

END;

Figure 2.12. Terminal and procedure environment specification formats

42

STARTEXPCHECK i.e., never, or at the completion of every

simulated time interval (everytimechange), or after every

simulated event (everyevent).

~=the time has arrived for a start event previously filed for this
ENV by the user with the Terminal Mode Command Language.

The format for specifying a procedure ENV is presented in Figure
2.12.

The use of general PASCAL procedures in the ENV component requires
knowledge of the data structures and the global system variables used in
the State Architecture Simulator (SAS) of the SAN model being simulated.
The remaining paragraphs of this section which explains the use of
general PASCAL procedures in ENV may be skipped until the SAS
implementation has been discussed.

Within an ENV procedure, the user basically can access all the
global system variables; however, only a subset of global system
variables, which are useful to the users, are discussed in this
dissertation. Users interested in all possibilities should study the SAS
source listings. One group of these system variables are those related to
the current state, imput/output, and execution state of individual
components. The detailed system variable names are shown in Figure 2.13.
Notice that to reference a user component, the special prefix 'U$' is
appended to the beginning of the component name. The reason is to
distinguish the user component names from the PASCAL reserved words and

the SAS variables used in the procedure.

43

Another group of system variables, which may be set to control
simulator execution, is shown in Figure 2.14. The type of value
assigned to each system variable will be discussed in the next chapter.
The user can define new variables local to each ENV procedure. Besides
the use of global system variables, the user can access some of the

system procedures. Only those typically useful system procedures are

shown in figure 2.15. Examples on using system procedures will be

provided in Chapter IV.

Variables‘

fsm[USname].cs
.cxpfil]
.cxs[i]
.czpfi]
.czs[i]
.execstatus

cfp[USname].cxpli]
.cxsfi]
.czpli]

.execstatus

cfs[USname].cxs[i]
.czs[i]
.execstatus

delpf{USname].cxpll]
.czp[1]
.execstatus

dels[U$name].cxs[1]
.czs{l]
.execstatus

der[U$name].cs
.cxsfl]

.czp[l]
.execstatus

Meaning

The current state, the ith cyurrent
pulsed input, static input, pulsed
output, static output and the execu—
tion state of the named FSM.

the ith current pulsed input, static
input, pulsed output and the execu—
tion state of the named CFP.

the ith current static input, static
output and the execution state of
the named CFS.

the first current pulsed input,
pulsed output and the execution state
of the named DELP.

the first current static input,
static output and the execution state
of the named DELS.

the current state, the first current
static input, pulsed output and the
execution state of the named DER.

clk[USname}

que [USname]

env[U$name]

Figure 2.13.

.cs.state
«Cs.time
«cxpfl]
.czpfl]
.czs[1l]
.execstatus

.cxpli]
.czp[l}
.czs[l]
.cs.state
.cs.size
.engstatus
.degstatus

«cxpli]
.cxs[i]
.czpfi]
.czs[i]
.execstatus
«tstart

.updatestate.task
.updatestate.ntzpfi]
.updatestate.ntz[i}]
.updatestate.time

the current control state, the clock
start time, the first current pulsed
input, pulsed output, static output
and the execution state of the named
CLK.

the ith current pulsed input, the
first current pulsed output, static
output, control state queue size, the
execution state with respect to
loading data, and the execution state
with respect to dequeueing data from
the named QUE.

the itP current pulsed input, static
input, pulsed output, static output,
the execution state, the prescheduled
time of a future start event, the
indication of a future start event,
the ith pext pulsed output, static
output and the next update time of
the named ENV.

Global system variables related to the status of each
component

1%

Variabley

file event

file kind

file name

file time

seed

syshalt

tbe
tend

tnow

Figure 2.14.

46

Meanings

the event type of the next event to
be scheduled in the event file.

the component kind of the next event
to be scheduled in the event file.

the component name of the next event
to be scheduled in the event file.

the event executon time of the next
event to be scheduled in the event
file.

the seed value for the random number
generator.

system half variables, true means
simulation execution is stopped.

beginning of the simulation time.
ending of the simulation time.

current simulation time,

Global system variables which can be set to control

simulator execution

Procedure names

pname(USname)

pall

peventfile(output)

sname(US$name)

sall

azp(n,zp)

azs(n,zs)

astartcheck(option)

fabs(T)

Description

Print the status of the named component.

Print the status of all the system
components

Print the contents of the event file

Save the current status of the named
component in the system data file

Save the current status of all the system
components in the system data file

Assign the value zp to the indexed pulsed
output of the currently executing
environment

Assign the value zs to the indexed static
output of the currently executing
enviromment

Assign the value option (never,
everytimechange or everyevent) to the
currently executing environment

Schedule a future start event for the
currently executing environment at time T,
T must be greater than or equal to tnow

finc(T)

uabs(T)

uine(T)

randint(max)

Figure 2.15.

Schedule a future start event for the
currently executing environment at time

tnow + T, T must be greater than or equal
to zero

Schedule an update event for the currently
executing environment at time T, T must be
greater than or equal to tnow, this
command makes the currently executing
environment busy until T

Schedule an update event for the currently
executing environment at time tnow + T, T
must be greater than or equal to zero,
this command makes the environment busy
until tnow + T

A function that returns a random integer
between 1 and max.

Definition of user accessible SAS procedures

8%

49

III. STATE ARCHITECTURE SIMULATOR

A. Overview of the State Architecture Simulator

The State Architecture Simulator (SAS) is made up of a VAX command
language program, named SAS.COM, and two PASCAL programs namely
TRANSFORM.PAS and SAS.PAS. The SAS compiles, executes, and reports on
simulations of user supplied SAN models. SAS was developed and is rununing
on a VAX 11/780 at Iowa State University using the VAX VMS V2.0 operating
system.

The countrol of the SAS eunvironment is governed by the VAX command
language program, SAS.COM. Here, we will present an overview of the
control structure of the SAS enviroument as shown in Figure 3.1.

The SAS begins by performing Transformation (2) on a user supplied
SAN System Specification (1) In this step, the SAS scans the SAN
Specification ;nd compiles the non~-PASCAL portions of the specification
into equivalent PASCAL source code modules (3). Control is then passed
to the PASCAL Compiler (4) which compiles the source modules into object
modules (5). The object modules are then linked (7) to a set of
standard pre-compiled SAS modules (6) creating a robust executable file
(8) corresponding to the original system specified by the user. Control

then passes to the executable system simulation file which proceeds

through three major steps:

50

|
)
|
-~ 74N “~ L

(2) SOU
_ RCE
SAN SYSTEM ¢——3 TRANSFORMATION PASCAL
SPECIFICA- . MODULES
TION (executable file) (source
data file) ! T file
|
[}
)
A4
OBJECT (4 <
PASCAL PASCAL
?SBUQEE COMPILER
file) !
]
]
|
¥
(7)
PRECOMPILED
PASCAL < SAS MODULES
LINKER (object
. file)
|
1
|
1
N4
(8) PERFORMANCE
__y| EXECUTABLE SYSTEM
SIMULATION
— data flow
DATA IN
—aem>» control flow TA
. SYSTEM
STATUS
DATA
| INITIALIZATION date £ile
" (12) SYSTEM
EXECUTIVE RESTART
INITIALIZA-
TERMINAL TTON DATA
(executable file) data file)

Figure 3.1. Control structure of the SAS environment

1)

2)

3)

51

Data Input: scans the original SAN system specification,
extracting those model parameters that are stored as table
entries in the simulation (e.g., component input/output sets,
execution times).

Initialization: can be either new or old (restart). For a
new initialization, the SAS computes initial static outputs
and inputs for all components based on their initial or
default values. The SAS then examines that all initial
compouent outputs are functionally and stably consistent with
the given initial component inputs. If the system is
unstable, simulation execution terminates at this point. For
an old initialization, the SAS reloads the simulaﬁed system
status from the réstart initialization data file (l1), which
had stored the system status at the end of a previous system
executioun.

System Executive: carries out the simulated execution of the
user's system. Performance trace reports are entered as
appropriate in a performance data file (9); system status
reports are entered in the system data file (10); user inter-
action with the model through the execution of terminal
enviroument components is carried out through the user's

terminal. BSAS error reports are also made to the user via

the terminal.

52

The System Executive synchronizes most of the simulation model
activities using an event file, the structure of which is shown in Figure
3.2. Events associated with the same simulation time are grouped in the
same event set. The entry for each event specifies the kind and name of
basic component and the type of event involved.

Events are removed from the event file and acted upon in simulation
time in chronological order, eveants within an event set being selected
randomly. |

Events are added to the event file (scheduled) as a result of
component response to the currently executing event (e.g., pulsed output
to a new component, future timeout for a starting clock).

Simulation time is advanced every time the current event set becomes
empty. SAS steps through a serles of values to pick up any scheduled
environments or trace procedures prior to taking the value correspounding
to that of the next event set in the event file.

The simulation halts when the preset simulation halt-time, Tend, is
exceeded, or when the user invokes a halt through the Terminal Mode
Command Language.

Whenever a terminal enviroument executes or a system error occurs,
the system executive makes the on-line command monitor available to the
user through the user terminal.

SAS offers several trace functiouns. In particular, the user may
specify that SAS sample and save the value of any specified set of SAN

system variables or the values of specified boolean expressions of the

53

!

Figure 3.2.

time count Lnext nextevent
kind nsme lact.lon [next
-
-l
kind nameJ action next
LY
time count next nextevent
kind name Lacuon [naxt I
]
} kind name Iaction] noxt
| 7
|
[-2
| 1
1
l |
1
time count next nextevent
i 5
- kind name acticn l next

Event file structure

3

54

SAN system variables. The trace functions are invoked by augmenting the
initial SAN system model with one or more instances of the three kinds
of trace specifications as described in Chapter III.F.8.

At the termination of a simulation rum, and at the user's option,
the final status of the total simulation system is saved in the restart
initialization file. The final status file of the rum can be used at a
later time to initialize a new simulation rum that will continue from the
state in which the initial run stopped.

The user may optionally include an initialization specification
(INIT) in the SAN system specification in which is indicated.the values
of simulation time at which the run should begin and end and whether SAS
should trap.multiple simultaneous pulsed inputs to single components.

SAS consists of three programs, which are made up 9f modules of
procedures. The first program, TRANSFORM.PAS, implements the
transformation process aund is made up of four modules of PASCAL
procedures; namely: TRANPARAM, TRANSFORM, TRANSM, and TRANSUP. The
second program, SAS.PAS, implements the Data Input, Initialization and
System Executive processes. This program is made up of fourteen
predefined modules of PASCAL procedures; namely: DATASTRU, SAS, DATAIN,
HIST, INIT, ERROR, INILOAD, RELOAD, INTERNAL, SM, SCHEDULE, TERM, SMPS,
STAfSAVE, and a user defined module of PASCAL procedures called USER.
USER 1s generated by the transformation process in compiling the procedure

portions of the SAN specification into equivalent PASCAL source code

55

modules. The third program is a VAX command language program called
SAS.COM.

SAS.COM governs the control of the SAS environment. SAS.COM first
invokes the Transformation process; then the PASCAL compiler and linker
are Iinvoked to compile the PASCAL module, USER, aund to link USER.obj, the
USER object file, with the precompiled SAS.obj to produce a system
executable image. SAS.COM then executes the system executable image.

In the SAS discussion below, the SAS source listings are frequently
referenced. The listings1 accompany this dissertation in a separate
binding. To help locate the source lines, the source listings are
separated into twenty modules. To reference a line in a particular
module, the module number and the line number within the module (module
number, line number) are indicated. The module names and their
corresponding module numbers are shown in Table 3.1. For example,
maxstrlength = 40; appears in line fifteen of the module DATASTRU, which
is the first module. This line is referenced by (1, 15).

The following sections will present a detailed overview of the SAS
implementation. First, we will describe the data structures of the SAS
program; how the SAS keeps track of the necessary data of each

component, the event file, and the performance trace.

1The listings can be obtained from the author.

56

Table 3.1. SAS program modules reference table

Function Module Name Module Number
Data Structure DATASTRU.PAS 1
Data Input SAS.PAS 2

DATAIN.PAS 3
HIST.PAS 4
INIT.PAS 5
ERROR.PAS 6
Initialization INILOAD.PAS 7
RELOAD.PAS 8
System Executive INTERNAL.PAS 9
SM. PAS 10
SCHEDULE.PAS 11
TERM.PAS 12
SMPS.PAS 13
STATSAVE.PAS 14
Transformation TRANPARAM.PAS 15
TRANSFORM. PAS 16
TRANSM.PAS ‘ 17
TRANSUP.PAS 18
Operation Steps SAS.COM 19
User USER.PAS 20

Second, the function of the Transformation process will be
described: how the Transformation process scans through the user defined
SAN model to generate a set of PASCAL compatible procedures. Third, we
will describe the Data Input process: how the Data Input process scans
through the user defined SAN models to check the SAN syntax and to

establish the simulated system in the PASCAL data structure environment.

57

Fourth, we will describe the Initialization process. Fifth, we will

describe the System Executive, which is the heart of the simulated

system execution process.

B. Data Structure

This section preseuts an overview of the major data structures used
in the SAS implementation. The serious reader is advised to have a
general idea of the data structures of SAS before studying the SAS
implementation. In the course of studying the SAS implementation,
readers should not hesitate to reference the data structures file,
DATASTRU.PAS, in order to understand the SAS implementation. As an aid
to clear exposition, all occurrences of constant, type, variable and
procedure names in the SAS.PAS program will be underlined in this
section.

The following paragraphs will describe the philosophy of string
usage, the constant and type declaration of the DATASTRU.PAS file, and

highlight the data structures for components, event file, and performance

trace.

1. Philosophy of string usage

The user can use arbitrary alphanumeric strings to name different
kinds of compounents and to assign state, input and output variables. In
this way, the user can name the compounent, state, input and output values

according to their generic names, which provides a better feeling and

58

understauding of the SAN model. However, string type may not apply to

each kind of PASCAL variable. In SAS, each component is referenced via an

array lndexed by the component enumerated name, e.g. fsm: array [fsmname]
of single fsm (1, 601). All FSM components are referenced in the array
fsm indexed by their component enumerated names. In PASCAL, the array
index cannot be a string. To get around the problem, all the component
names (alphanumeric strings) are mapped in one-to-one correspondence to
the SAS predefined enumerated names. In this case, the user can still
specify and refer to the components via their generic names while the SAS
translates the component names into enumerated names used by SAS. The
details on the translation (transformation) will be discussed in the

Transformation process, Chapter III.C.

2. Constant and type declaration

In the DATASTRU.PAS file, there is a set of predefined coustants
which are not changed throughout the SAS execution. Some of the values
for the constants are arbitrarily assigned and some are intentionally
assigned to set a limit for the size of the SAN models. In the present
implementation, the SAN models are allowed to have a maximum of 162
components (1, 7); the maximum length of a string is 40 characters (1,
15). The maximum number of the pulsed or static input/output streams of a
component is 20 each (1, 18); the maximum number of fanouts from an output
is 10 (1, 20). Besides that, a set of integer constants (1, 25) are
defined for error messages in the SAN syntax and a set of integer

constants (1, 40) for error messages during the SAS execution. There are

59

constants defined for the SAN delimeters (1, 54) and also a set of string
constants (1, 63) for the SAN and SAS special symbols. All of them are
listed in the DATASTRU.PAS file. |

The SAS defines smname (1, 157) as a set of enumerated names for

components. The enumerated names, S$UNCONNECTED, S$SYSTEM-MONITOR, fsmO,

cfp0, c¢fs0, delp0, delsO, queOD, clkO, derO and env0 are reserved for the

SAS system. SSUNCONNECTED are regarded as unconnected. S$SYSTEM-MONITOR

is a terminal ENV, which allows the user to examine the system status

whenever a system execution error occurs. fsmO, cfp0, c£s0, delpO, delsO,

que0, clk0, derO, and env0 are used by SAS to indicate that there is no

user defined FSM, CFP, CFS, DELP, DELS, QUE, CLK, DER and ENV components,
respectively. The rest of the enumerated names are used to map with user
defined component names, so that there is a one—to-one correspondence
between the user defined component names and the enumerated names. The
SAS separates all the enumerated names into nine groups according to nine
kinds of components. There are fifty—two enumerated names assigned for

FSM components ranging from SSUNCONNECTED to £sm50 (1, 174).

S$UNCONNECTED and fsmQ are reserved for the SAS system and the other fifty

enumerated names, fsml to fsm50, are used for user defined FSM components.

In the same manner, CFP has twenty enumerated names ranging from cfpl to
cfp20, for user defined CFP components; CFS has twenty, ranging from cfsl

to cfs20; DELP has ten, ranging from delpl to delplO; DELS has ten,

ranging from delsl to delslO; QUE has ten, rauging from quel to quelO; CLK

has ten, ranging from clkl to clklO; DER has ten, ranging from derl to

derlO; ENV has twenty, ranging from envl to env2O.

60

3. Components

All compounent characteristics are kept in an array indexed by an
enumerated name. Each kind of component has its own array name. The

FSMs are represented by the array, fsm[fsmname] (1, 60l), and indexed by

a member of the FSM enumerated name, fsmname. Each FSM array has a
record of elements, singlefsm (1, 261), holding all the information on

the FSM component. The singlefsm holds the following information:

S a linked list for the state set

XpP a linkéd list for the pulsed input set

nXpP number of pulsed input streams

Xs a linked list for the static.input set

nXs number of static input streams

ZP a linked list for the pulsed output set

nZp number of pulsed output streams

Zs a linked list for the static output set

nzZs number of static output streams

fusfirst a linked list for the list of FNS vectors

fnstype type of FNS function (procedure or list)

fnsproc a number corresponding to the case index of the FNS
procedure in the procedure fsmfunction, which
contains all the procedures defined in the FSM
components

foutpfirst a linked list for the list of FOUTP vectors

foutptype type of FOUTS function (procedure or list)

61

foutpproc a number corresponding to the case index of the FOUTP

procedure in the procedure fsmfunction

foutsfirst a linked list for the list of FOUTS vectors
foutstype type of FOUTS function (procedure or list)
foutsproc a number corresponding to the case index of the FOUTS

procedure in the procedure fsmfunction

destzp a record storing the destinations for each pulsed output
stream

destzs a record storing the destinations for each static output
stream

texec time required to execute the compounent

execstatus execution status of the component; it can be Idle, Pend,
or Busy

cs current state value

cxXp the value of the current pulsed inputs

CXs the value of the current static inputs

eczp the value of the current pulsed outputs

czs the value of the current static outputs

cxsload a boolean value representing whether the current static

inputs have been changed at the current simulation time,

tnow

updatestate an update record storing the next update time, next
state, next pulsed outputs, next static outputs and

the task of the update process

62

The updatestate record is a general purpose update record (1,251).
Not all the elements in the update record are applicable to each kind of
component. For example, the task entry with valid values (notask,
delete, add) is used by a queue to indicate whether data is to be added
into or deleted from the queue in the update operation.

The above discussion of a single FSM data structure can be
generally applied to all the other kinds of components. The details of
each kind of component will not be discussed here, but they are listed

in the DATASTRU.PAS file.

| The event file is organized in a multi-~linked list structure as
shown in Figure 3.2. The multi-linked list groups all the events with
the same execution time into one event set and those events with

different execution times into different event sets. Each eventsetentry

(1, 493) has a record of elements which counsists of the following:

time the execution time of the event set
count the total number of event entries in the event set

nextevent a pointer to the first event entry of the event set
next a pointer to the next event set
Each evententry (1, 485) within an event set also has a record of

elements which counsists of the following:

kind the kind of the component
name the name of the component

action the type of event (start or update)

63

next a pointer to the next event entry within the event set

Event sets are organized in chronological order. The event set
with the lowest execution time 1s stored on the top of the list. Within
an event seg, the event entries with ENV kind are stored oun the top of
the list; the event entries with the other kinds of components are
stored below the ENV kind. The ENV kind events are given higher
priority to be executed within an event set because when an ENV

component 1s in terminal mode, we want the user to always have first

chance to examine the system.

S+ Performance trace

SAS offers three types of trace functions. They are the regular
varlable history, conditional variable history and regular expression

history. Each of the trace functions is organized in a multi-linked

list structure.

The data structure for a set of regular variable histories is shown
in Figure 3.3. Each instance of a regular variable history is

represented by a varhistregentry (1, 541) record. All the

varhistregentry records are linked together in a linear linked list.

The first instance of the varhistregeuntry is pointed to by the regular

variable history header, varhistregpt (1, 633). The varhistregentry

record (1, 541) consists of the following information:

histname the name of the regular variable history instance

64

varhistregpt

~

histname histname - histname
num num num
varstat varstat vargtat
dthist dthist / dthist
ntsave E ntsave E ntsave
checkopt ! checkopt ! checkopt
next next next "1
(]
name
statfirst ,/‘—\‘
next hvalue T hvalue
time time

next next

name 3 ‘;

statfirst b
next

-

——e,

name

statfirst —
Ca - amw -
next

",

Figure 3.3. Data structure of a set of regular variable histories

65

num the order of the regular variable history
instance's occurrence, e.g., 1 implies the first

regular variable history instance

varstat a header pointing to the first record of a variable
history
dthist the simulation time intervals at which the set

of variables value are to be recorded
ntsave the next simulation time for the set of
variable values to be recorded

checkopt the frequency for which the set of variables

are to be recorded at the recording time

(everzevent means a sample is recorded after

every event executed at the recording time;

everytimechange means precisely one sample is

recorded just before advancing simulation time
forward from the curreut recording time;
never means the trace is disabled)
next a pointer pointing to the next regular variable
history record
For each variable, there 1s a variable history record called
histentry (1, 533) to save the trace of the variable. The histentry

consists of the following:

name the name of the variable
statfirst a pointer pointing to the first data element of

the variable

66

next a polnter pointing to the next variable history
record
Each data element is represented by a statentry (1, 504), which

consists of the following:

hvalue the value of the data element
time the time at which the data i1s recorded
next a polnter pointing to the next data element

The data structure for a set of conditional variable histories is

shown in Figure 3.4. Each instance of a conditional variable history is

represented by a varhistconentry (1, 354) record. All the varhistconentry

records are linked together in a linear linked list 1like the

varhistregentry records. The first instance of the varhistconentry is

pointed to by the conditilonal variable history header, varhistconpt (1,

634). The varhistconentry record is similar to the varhistregentry record

except that the varhistconentry record does not have the dthist and ntsave

entry to indicate the next simulation time the samples are recorded.
Instead, each instance of a conditional variable higtory has a boolean
expression. The boolean expression is evaluated at the times specified in
the checkopt entry. The variables are recorded at those times when the
boolean expression evaluates to true.

The data structure for a set of regular expression histories is
shown in Figure 3.5. Each instance of a regular expression history is
represented by an exphistentry (1, 564) record. All the exphistentry
records are linked together in a linear linked list like the

varhistregentry records. The first instance of the exphistentry is

67

varhisteconpt
histname histname histname
num num num
varstat varstat r‘ varstat
checkopt l, checkopt 4 checkopt
1
next i next ! next 1
7 $
name
statfirst
.v - oay.
next hvalue hvalue
time time
next next
name 1
statfirst,
L ’- —— -
next ,
{
|
3
name
statfirst
-
L next
El

Figure 3.4. Data structure of a set of conditional variable histories

68

exphistpt

histname / I histname | P o | hiatnama |
num num num
| expstat | expstat | oxpstat
dthist [dthist f dthist
ntsave i , nhtsave s ntsave
1
checkopt checkopt checkopt
next next next
)
status
time
L next
status
time
! next
f
!
status
time

L next

Figure 3.5. Data structure of a set of regular expression histories

69

pointed to by the expression history header exphistpt (1, 635). The

exphistentry record is similar to the varhistregentry record except that

the exphistentry record has a expstat record pointer (1, 567) instead of

a varstat record pointer (1, 544). The expstat record pointer points to

a boolean status data element called statusentry (1, 514). Each

statusentry record consists of the following:

status the boolean value of the expression
time the time at which the expression was evaluated
next a pointer pointing to the next data element

C. Transformation

The function of the Transformation process 1s to compile the local
procedures and the boolean expressions in the SAN specification into
equivalent globally compatible procedures. All the global procedures
generated by the Transformation process are stored in USER.PAS. As an
aid to clear exposition, the Transformation process will be discussed in
reference to a simple SAN model as shown in Figure 3.6. This SAN model
has two ENV components and a FSM component. Three kinds of performance

traces and an initialization are also included in the simple SAN model.

1. Transformation of local procedures

In SAN, the Next State Function (FNS), Pulsed Output Function
(FOUTP), and Static Output Function (FOUTS) of a FSM, the FOUTP of a CFP
and the FOUTS of a CFS can be specified via the procedure option as

discussed in Chapter II. These local procedures have to be extracted

70

ENV Terminal : interlaced
ZP.1 TO Pulsegen.XP.1 : start;
FUNCTION : terminal;
deftexec : 0.0;
STARTEXP : true;
STARTEXPCHECK : everytimechange;

END;

ENV Puisegen : intertaced
XP.1 FROM Terminal,.ZP,1 : start;
ZP.1 TO Counter.XP.1 : reset,inc;
FUNCT!ON : procedure
procedure Pulsegenproc;
var |:integer;
asarrayCl..2] of string;
begin
al11:='raset '
ap22:='inc 'ty
ft=randint{5);
with envCUSPulsegen] , updatestate do
begin
if{i=3) then ntzpLil:=at1]
else ntzpt1l:=al21;
end; fend with}

deftexec:1.0;

STARTEXP : false;

STARTEXPCHECK : never;
END;

FSM Counter : Interlaced
s :0,1,2,3,4,5;
defsinit : 0;
XP.1 FROM Puisegen.ZP.1 : reset, Inc;
ZS.1 UNCONNECTED : 0,1,2,3,4,5;
FNS : procedure
if oxp.1='reset' then nts:='0'
else
begin
if es='0' then nts:='1"'
else (f css'1' then nts:='2’
else If cs='2' then nts:='3
else [f cs='3' then nts:
else if cs='4' then nts:='5'
else nts:='5';

FOUTS : procedure
ntzs.1:=nts;
END;
deftexec : 0.0;
END;

VARHISTORY TraceCount : regular
VARIABLES : Counter.czs,1;
DTHISTORY : 1.0;

END CHECKOPT : everytimechange;

VARHISTORY TracePuise : conditional
VARIABLES : Pulsegen,czp.1;
CONDITION : Pulsegen.czp.1='reset';

END CHECKOPT : everytimechange;

EXPHISTORY Tracestatus : regular
EXPRESSION : (Pulsegen.czp.1='inc')and(Counter,czs,1="'1");
DTHISTORY : 1.0;
CHECKOPT : everytimechange;

END;
INIT
tbeg : 1.0;
tend : 10.0;
END;

Figure 3.6. A simple SAN model

71

and transformed into globally compatible procedures in order to be
used by the SAS.PAS program. All the local procedures declared in the
FSM, CFP and CFS instances will be transformed and placed together in
procedures fsmfunction (20, 755), cfpfunction (20, 787) and cfsfunction
(20, 798), respectively. Each instance name is mapped into its
corresponding enumerated name according to its order of appearance in
the SAN specification. For example, the first FSM component, Counter,
in the SAN model is given the enumerated name, fsml (20, 910).

In the Transformation process of the local procedures in FSM
components, the following operations are done:

1) All the local state, input and output variable names are

transformed into thelr corresponding global PASCAL variables.

For example, the cxp.l in the FNS procedure of Counter is

transformed into fsm[fsml].cxp{l] (20, 762).

2) All the character strings declared in the local procedures
are mapped into the SAS defined string array: constval[i],
according to the order of the string appeared in the SAN
model. The character string is mapped into an array variable,
constval[i], so that the forty characters long string can be
shrunk to a twelve character variable. It will make the
indentation of the transformed procedure look better. For
example, 'reset' in the Counter's FNS procedure is mapped into

constval[l] (20, 762), 'O' im the Counter®s FNS procedure is
mapped into comnstval[2] (20, 762).

72

3) All the PASCAL reserved names remain unchanged, e.g., else if
(20, 766).
4) Each local procedure mapped into the procedure fsmfunction is
referenced by passing an integer to the procedure fsmfunctiom.
The number by which the local procedure is referenced is equal
to the order of the place the local procedure appeared in the
SAN model. For example, the FNS procedure of the Counter is the
first procedure to appear in the FSM component. This procedure
is referenced by passing an integer value i to the procedure
fsmfunction (20, 758).
The transformation of local procedures in CFP and CFS components is
the same as in the FSM components. In case there is no local procedure
déclared in a FSM, CFP or CFS component, its corresponding procedures

fsmfunction, cfpfunction and cfsfunction consist only some dummy

statements. For example, there is no CFP local procedure declared in the
example SAN model. The procedure cfpfunction, which holds all the
transformed CFP local procedures, has only some dummy statements. The
dummy statements (20, 790-796) are a convenience to the designer and also
allow the dummy procedure to return an error message in case the dummy

procedure 1s called.

2. Transformation of ENV procedure

The procedures defined in the ENV components are PASCAL compatible
procedures except that the component names used in refereuncing a

component should be their enumerated names. In the Transformation

73

process, all these user defined component names are transformed into
their correspounding enumerated names. For example, U$Pulsegen in

the ENV procedure of the SAN model is transformed into its enumerated
name, env2 (20, 817). Each ENV procedure is named by appending a suffix
'proc' to the end of the ENV component name. For example, the ENV
procedure in the Pulsegen is named as Pulsegenproc. In order to
reference these ENV procedures, the procedure envfunction (20, 824) is
generated by the Transformation process. The procedure envfunction has
a case statement. The case statement branches off to call the proper
ENV procedure according to the integer passed to the procedure
envfunction. The order in which the ENV procedure names appear in the

procedure envfunction is the same as they appear in the SAN model.

3. Transformation of boolean expression in ENV

The boolean expression of the STARTEXP line of each ENV instance
in the SAN model is put under the boolean function envexpst
(20, 834). Each of those boolean expressions are assigned to the
boolean function variable envexpst. The order in which the boolean
expressions appear under the case statement of the boolean function

envexpst is the same order thelr corresponding ENV instances appeared in

the SAN model. In transporting the boolean expression from the SAN model
to the boolean function envexpst in the USER module, the following

transformations are done:

1) All the SAN global variables are transformed into PASCAL

compatible global variables.

74

2) All the character strings declared in the boolean expression
are mapped into the SAS defined string array, constval[i], as
was done in local procedure transformations.

3) All PASCAL reserved words remain the same.

In the example SAN model, there are two ENV instances. The
STARTEXP of one ENV instance has a simple boolean expression with a
constant value true and the other ENV instance has a constant value
false. These two simple boolean expressions are transported to the
boolean function envexpst (20, 834). The assignment statement (20, 839)
under the branch number 1 of the case statement is transported from the
first ENV instance. The assignment statement (20, 842) under the branch
number 2 of the case statement is transported from the second ENV

instance.

.

4. Transformation of regular variable history instances

The regular variable history trace is recorded via the procedure
historynum (20, 849), which is generated by the Transformation process.
The procedure historynum consists of a sequence of procedure calls to
procedure history (20, 854). The procedure history records the value of
the PASCAL global variables passed to the procedure. These variables are
extracted from the SAN global variables in the line VARIABLES of the
regular variable history instance. If there are N variables needed to be
traced in one regular history instance, N calls of the procedure history
are made to record the traces. In the example SAN model, a static output

variable, Counter.czs.l, is specified to be traced under the regular

75

variable history instance, Tracecount. Counter.czs.l is transformed into

its PASCAL global variable, fsm[fsml].czs.[1]; this variable is used as a

parameter passed to the procedure history (20, 854). There are also two
integer parameters to be passed to procedure history. The first integer
identifies the order of the regular variable history instance appearing in
the SAN model, the second integer identifies the order of the variables
appearing in the line VARIABLES of a regular variable history instance.

In the above example, the variable Counter.czs.l appears in the first
regular variables history instance and the variable is also the first one
appearing in the line VARIABLES. Therefore, the two integers passed to
the procedure history are both 1. All the history procedures for one set
of variables of a regular variable history instance are put together under
the same branch number of the case statement in procedure historynum (20,
853-855). The set of history procedures for the first regular variable
history instance are put under the branch number 1, the set of history

procedures for the second regular variable history instance are put under

the branch number 2 and so on.

5. Transformation of the conditional variable history

The counditional variable history traces are recorded via the boolean
function conexp (20, 861) and the procedure savehistcon (20, 874). They
are both generated by the Transformation process. The function conexp
consists of the boolean expressions specified in the CONDITION line of the
conditional varilable history instances. The boolean expressions are

assigned to the function variable conexp (20, 866). In transporting the

76

boolean expression from the SAN model to the function conexp, the SAN
global variables are transformed into PASCAL compatible global
variables; the character strings are mapped into the SAS defined

string array constval[i] similar to the transformationm of the boolean
expression in the ENV instance. If there is more than one conditiomnal
variable history instance, the multiple boolean expressiouns are placed
under the case statement of the function conexp in the same order as the
conditional variable history instances appeared in the SAN model.

The procedure savehistcon checks if the trace of the conditional
variable history is to be recorded by comparing the check option and
evaluating the boolean expression of the conditional variable history
instance (20, 882). If they evaluate true, the procedure stathist (20,
884) is called to record thg trace of the variables, as specified in the
VARIABLES line of the conditional variable history instance. The SAN
global variables named in the VARIABLES line are transformed into PASCAL
campatible global varilable as a parameter passed to the procedure
stathist. The number of times the procedure stathist 1s called is equal

to the number of listed variables in the trace needed to be recorded.

6. Transformation of the regular expression history

The boolean expressions of the regular expression histories are put
together in the boolean function cexpst (20, 890). The boolean
expressions of the regular expression histories are transported to the
boolean function cexpst in the same manner as the boolean expressions of

the conditional variable history are transported to the boolean function

77

conexp (20, 86l). In the example SAN model, there is a regular
expression history instance. The boolean expression of the regular
expression history instance is transformed and put into the boolean
function cexpst (20, 890). The boolean expression is assigned to the

boolean function variable cexpst (20, 895) and put under branch

number 1 of the case statement (20, 893-897). The boolean expression is
put under branch number 1 because the regular expression history in

which the boolean expression belonged to is the first one appearing in

the SAN model.

7. Generation of procedure iniset

One other procedure generated by the Transformation process is the
procedure iniset (20, 903). The procedure iniset assigns user defined

component names to the array smword[i] and assigns the corresponding

component enumerated name to the array smsym[i]. smword[l], smsym[l],

smword[2] and smsym[2] are reserved for the SAS system compounents

UNCONNECTED and SYSTEM-MONITOR (20, 905-908). smword[3], smsym[3],

smword[4], smsym[4],-——and so on are for user defined component names and

their corresponding enumerated names. For example, the user defined
component name, Counter, is assigned to smword[3]; the counter’s enumerated
name, fsml, is then assigned to smsym[3]. The enumerated names are
assigned to the component names in the following order: the first FSM
component appearing in the SAN model is assigned the enumerated name fsml;
the second appearing FSM component is assigned fsm2, and so on. The first

CFP compouent appearing in the SAN model is assigned the enuﬁerated name

78

cfpl; the second CFP component is assigned cfp2 and so on. As for CFS,
DELP, DELS, QUE, CLK, DER, and ENV components, they are also assigned in
the same manner. The details of the enumerated names for each kind of
component had been explained in the previous section (Data Structure).
The procedure iniset also assigns enumerated names to the SAS global
variables, which identify the first and last component enumerated name of
each kind of components. For example, there is only one user defined FSM
component; therefore, the first and last FSM component enumerated name

variables, fsmf and fsml are both assigned fsml (20, 916-917). There is

no user defined CFP component; the first and last CFP component enumerated

name variables, cfpf and cfpl, are both assigned cfp0 (20, 918-919).

The SAS global variables which identify the set of enumerated
names for each kind of component (20, 934-942) are also initialized in
the procedure iniset. Finally, the procedure iniset establishes an
array of character strings, which are defined by the user in the local
procedures of the FNS, FOUTP and FOﬁTS and those in the boolean
expressions of the SAN model. The character strings which appeared in the
local procedures and the boolean expressions are extracted and assigned to
the character string array, constval[i], in the same order the character
strings appeared in the SAN model. For example, 'reset' the first user
defined character string appeared in the local procedure FNS is assigned

to constval[l], 'O' the second appeared character string is assigned to

constval[2] (20, 943-950).

79

8. An overview of program TRANSFORM

The program TRANSFORM implements the Transformation process as
described in the above sub-gsections. The program TRANSFORM consists of
four modules of PASCAL source code namely: TRANPARAM.PAS,
TRANSFORM.PAS, TRANSM.PAS and TRANSUP.PUS. TRANPARAM.PAS (15, 1-148) is
a declaration file. This file consists of all the global coustant |
(const), type, and variables (var) declarations used by the procedures
of the program TRANSFORM. The module TRANSFORM.PAS consists of the main
program TRANSFORM and some other utility procedures. TRANSM.PAS and
TRANSUP.PAS consist of utility procedures called by the main program.
The names and the functions of the utility procedures used by the main
program will be described in the structure of the main program. The
program TRANSFORM reads in the SAN model from the logical file named
sanfile (15, 115). The program TRANSFORM generates a set of PASCAL

compatible procedures and functions, namely: fsmfunction, cfpfunction,

cfsfunction, envfunction, envexpst, historynum, conexp, savehistcon,

cexpst and iniset; they are temporarily saved in the logical files,

fsmfile, cfpfile, cfsfile, envfile, envexpstfile, historyfile,

conexpfile, conhistfile, cexpstfile and inisetfile (15, 117-126)

respectively. At the end of the execution of the program TRANSFORM, these
temporary files are merged together by the SAS command procedure SAS.COM
to a single module of PASCAL procedures and named USER.PAS. The program
TRANSEORM also generates an error message file, errfile (15, 116), to

record the error messages.

80

The following sub-sections will describe the structure of the main
program TRANSFORM and the major procedures called by the main program.
The major procedures include tranfsm : processes the FSM instances;
trancfp: processes the CFP instances; trancfs: processes the CFS

instances; resmname: processes the DELP, DELS, QUE, CLK, and DER

instances; traneuv: processes the ENV instances; tranvar, tranreg, and
trancon: process both the regular and conditional variable history
instances; tranexp: processes the regular expression history instaunces,
and inisetgen: generates the procedure iniset as described in

Chapter III.C.7.

9. Structure of program TRANSFORM

The program TRANSFORM countrols the flow of the Transformation
process. The program starts out by assigning specilal strings to some
string variables. The string variables saword[i] (16, 819-828)
represent the local state and input/output variables named in the SAN
model. The string variables pasword[i] (16, 829-926) represent all the
PASCAL reserved words. The string variables sysword[i] (16, 927-935)
represent some of the SAS system variables recognized in the
Transformation process. The program then opens the SAN model

specification file for reading by calling reset(sanfile) (16, 936) and

opens the error message file to be written by calling rewrite(errfile)

(16, 937). After that, the headings of all the procedure modules which
will be generated by the Transformation process, are written into their

corresponding files (16, 942-959). For example, the headings for the

81

procedure holding all the transformed local procedures in the CFP
components to be written into the cfpfile file, is as follows (20, 787-
790):

procedure cfpfunction (num:integer),

var cfpproc:integer,

begin

case num of

The number of the local procedures declared for each kind of components
are set to zero (16, 964-971l). The headers for the list of each kind of
component are initialized to nil. The boolean variable sanend is set to
false indicating that the sanfile still has some components to be scanned.

Program TRANSFORM uses procedure readstr(var infile:text) (16, 198)

to access the SAN file, represented by a logical name sanfile. The SAN
file is scanned sequentially. In the beginning, procedure

reset(sanfile) (16, 936) is called to set the SAN file pointer to the

beginning of the SAN file. Everytime procedure readstr(sanfile) is
called, a string is read from the SAN file. A string 1is a sequence of

characters from the character set

symbol=['a'..'z',, 'A'..'Z", '0'..'9','%", '$'], (16, 158).

The character string is assigned to the global variable, tempstr.

Procedure readstr(sanfile) also returns the last character read, which

is not an element of symbol. The last character read is assigned to the

global variable, c.

Procedure readstr(sanfile) starts out by setting tempstr to a string

with only blank characters (16, 20l). Notice there is a write statement

82

following each read statement In procedure readstr(sanfile). The purpose

is to copy all the processed string into the error file, errfile. 1In case
of any syntax error, the position of the last processed string can be
located from the errfile. The repeat loop (16, 204-218) reads a character
from the SAN file. If the character ¢ is a blank, tab, or page mark
character, then the process is repeated. Basically, the repeat loop skips
all the leading blank, tab or page mark character of a string.

If the first character is a left brace, " ", then the characters
after the left brace are skipped until the right brace character is
encountered (16, 222-237). Lines (16, 222-237) allow procedure

readstr(sanfile) to skip all the comment statements. After all the

leading blank, tab, or page mark characters and the comment statements are

skipped, procedure readstr(sanfile) starts to read the string. The while

loop (16, 242-254) checks if the last character read is an element of the
character set, symbol, and if the string is still less than al (which is
forty) characters long, and eof(sanfile) is not true. The reading process
continues until one of the above check statements is false. Procedure

readstr(sanfile) sets tempstr to the last string read and sets ¢ to the

last character read.

The program TRANSFORM .then calls the procedure readstr (16, 988)
to read a character string from the sanfile. The procedure readstr
returns the character string in the string variable tempstr. Then a
while loop (16, 989-1002) is used to process all the component

specifications. The program will jump out of the while loop if the end

83

of the sanfile is reached or sanend is true (16, 989)., Inside the while
loop, tempstr is compared with the nine kinds of component name. If

tempstr equals FSMCON, then procedure tranfsm is called to process the

FSM component (16, 991). (The FSMCON, CFPCON and so on are global

constants declared in the data structure file for the strings 'FSM',
'CFP' and so on, respectively). If tempstr equals CFPCON, then procedure
trancfp is called to process the CFP component (16, 992). If tempstr
equals CFSCON, then procedure trancfs is called to process the CFS

component (16, 993). If tempstr equals DELPCON, DELSCON, CLKCON, QUECON

or DERCON, then procedure resmname is called by passing delpsym, delssym,

clksym, quesym or dersym to process the DELP, DELS, CLK, QUE or DER

component (16, 994-998). If tempstr equals ENVCON, then procedure tranenv
is called to process the ENV compounent (16, 999). If tempstr does not
equal any of the above component kinds, then ganend is set to true (16,
1000). 1If sanend is false, then procedure readstr is called again to read
~ another character string.

If sanend or eof(sanfile) is true (16, 989), then the program starts

to process the performance trace and initialization lustances. This
process also uses a while loop (16, 1005). Inside the while loop, the
tempstr is compared to the various performance trace instance kinds and
the initializatlon instance. If tempstr equals VARHISTCON, then procedure
tranvar (16, 1007) is called to process the regular or conditional
variable history. If tempstr equals EXPHISTCON, then procedure tranexp
(16, 1008) is called to process the regular expression history. 1If

tempstr equals INITCON, then procedure traninit (16, 1009) is called to

84

process the initialization instance. If tempstr is not equal to any of
the above character strings, then procedure error{err33) (16, 1012) with
an error message number, is called. If any error occurs, then the
Transformation process will halt by calling the procedure stop (16, 1013).
If there is no error, then procedure readstr is called again to read in
another character string. The while loop process continues until the end
of the sanfile 1s reached.

After processing the SAN model, the ending parts of all the
procedure modules generated by the Transformation process are written
into their corresponding files (16, 1021-1030). For example, the ending
parts for the procedure holding all the transformed local procedures for
the CFP components to be written into the cfpfile file is as follows
(20, 779-782):

otherwise execerr(E26);

if errflag then execstop;

end; end of cfpfunction
The procedure inisetgen (16, 1031l) is called to generate the module
iniset. If there is any error encountered during the Transformation
process, procedure ptranerr (16, 1033) is called to print out the error

messages. At the end, the error message file is closed to finish the

whole Transformation process.

10. Procedure tranfsm, trancfp and trancfs

Procedure tranfsm (17, 443) transforms all the procedures defined

in the FSM instaunces of a SAN model into a globally compatible procedure

85

fsmfunction (20, 755). Procedure tranfsm first reads the FSM compounent
name by calling readstr (17, 450). The FSM component name is stored
into the FSM component name linked list; the head of the linked list is
pointed to by fsmpt (17, 466). The procedure then skips all the
specification until the string 'FNS', 'END', or eof(sanfile) (17, 470)
is encountered. The syntax of the rest of the FSM specification will be
checked later in the Data Input process.

If tempstr equals 'FNS', the procedure saves the function type
(17, 475). The procedure then reads amother string. If tempstr
equals 'procedure', the number of the FSM procedure is increased by
one (17, 484), the procedure heading (17, 485) and procedure transproc
(17, 486) are called to transform the local procedure into a globally
compatible procedure. If tempstr equals 'list', the procedure skipproc
(17, 489) 1s called to skip to the end of the FNS function
specification.

Procedure tranfsm then skips all other specifications until the
string 'FOUTP', 'FOUTS', 'END', or of(saunfile)(l7, 497) is
encountered. If tempstr equals 'FOUTP' or 'FOUTS', the procedure goes
through similar steps to the FNS transformation (17, 499-544).

After processing FNS, FOUTIP and FOUTS specifications, the procedure
skips all other lines until the string 'END' or eof(sanfile) (17, 543) is
encountered. The 'END' indicates the end of the FSM instance
specification. If procedure tranfsm encounters end of file before the

string 'END', the procedure error(err7)(l7, 547) is called.

86

Whenever the Transformation process encounters a syntax error, the
procedure error will be called. An error message 1s passed to the
procedure error via a predefined integer constant. In the above
example, the procedure error(err?) is called. err7 represents the
error message number 7. In procedure error (16, 26l1), the error message
number 7 means 'missing END at the end of a State Machine' (16, 317-
318).

Procedure trancfp (17, 554) transforms all the procedures defined in
a CFP instances in a SAN model into a globally compatible procedure
cfpfunction (20, 38). The process of transformation is similar to that
for a FSM except that procedure trancfp transforms only the local
procedure in the FOUTP specification. The details can be seen in the
procedure trancfp source listings (17, 554-613).

Procedure trancfs (17, 618) transforms all the procedures defined
in the CFS instances in a SAN model into a globally compatible procedure
cfsfunétion (20, 48). The process of transformation is similar to that
for a FSM except that procedure trancfs transforms only the local
procedure in the FOUTS specification. The details can be seen in the

procedure trancfs source listings (17, 618-677).

1l. Procedure resmname

Procedure resmname (17, 681) processes all the DELP, DELS, QUE, CLK
and DER components of a SAN model. Since all the components of the
above kinds have a predefined function and do not have any user defined

procedure, procedure resmname does not have to do any transformation

87

beside recording all the component names. Procedure resmname first
reads the component name by calling readstr (17, 688). Depending on

the kind of component, the component name 1is stored into its
corresponding component name linked list (17, 703-710). The head of the
DELP, DELS, QUE, CLK and DER linked list is pointed to by delppt, .

. delspt, quept, clkpt and derpt respectively. The procedure then skips

all the specification lines until the string 'END' or eof(sanfile) is
encountered (17, 714). If procedure resmname encounters end of file

before the string 'END', the procedure error(err?) (17, 717) is called.

12, Procedure tranenv

Procedure tranenv (17, 111l1) transforms all the procedures and
boolean expressions defined in the ENV components of a SAN model into
globally compatible procedures énd boolean expressions as described in
Chapter I1II.C.2 and Chapter III.C.3. Procedure tranenv first reads the
ENV component name by calling readstr (17, 1118). The ENV component name
is stored into the ENV component linked 1list, the head of the linked list
is pointed to by envpt (17, 1133). The procedure then skips all the
specification until the string 'FUNCTION', 'END', or eof(sanfile) (17,
1137) 1is encountered.

If procedure tranenv encounters 'END' or eof(sanfile) before
'FUNCTION', then procedure error(err36) (17, 1139) is called to report the
error. If tempstr equals 'FUNCTION', the procedure reads another string.
If tempstr equals 'procedure', the number of the ENV procedure is

increased by ome (17, 1151) and the procedure dirtranp (17, 1152) is

88

called to transform the ENV procedure as described in Chapter IIIL.C.2. If
tempstr does not equal either 'procedure' or 'terminal', then procedure
error(err50) is called to report the error. Else, procedure tranenv

skips all other specifications until the string 'STARTEXP', 'END' or
eof(sanfile) is encountered. If tempstr does not equal 'STARTEXP', then
procedure error(err37) is called to report am error. Otherwise, it starts
the transformation of the expression as described in Chapter IIL.C.3. The
number of the ENV expressioun is increased by one (17, 1167). The headings
of the ENV expression to appear in the function envexpst (20, 83-96) are
written into the ENV expression file, envexpstfile (17, 1171-1175). The
procedure transexp is called to transform the SAN boolean expression into
a globally compatible boolean expression. After the boolean expression
transformation, procedure tranenv skips all other specification lines
until the string 'END' or eof(sanfile) is encountered (17, 1184). If the
procedure encounters end of file before the string 'END', the procedure

error(err7) (17, 1187) is called.

13. Procedures tranvar, tranreg and trancon

Procedure tranvar (17, 1416) identifies whether the current
variable history instance 1s a regular variable history or a conditional
variable history. Procedure tranvar first reads the vériable history
instance name by calling procedure readstr (17, 1423). The instance
name is temporarily saved in the global variable chist (17, 1428). The
procedure then calls procedure readstr to read another string. If

tempstr equals 'regular', then the procedure tranreg 1s called; else, if

89

tempstr equals 'conditional', then the procedure trancon is called; else,
the procedure error(err53) is called (17, 1433-1435). Procedure

tranvar then skips all the specification until the string 'END' or
eof(sanfile) i1s encountered (L7, 1443). If the procedure encounters end
of file before the string 'END', the procedure error(err?) (17, 1444) is
called.

Procedure tranreg (17, 1299) is called by procedure traanvar to
transform the SAN global variables to PASCAL coumpatible variables and to
establish trace procedure historynum to record the variables trace as
described in Chapter IIIL.C.4. Procedure tranreg first initializes
the number of processed SAN global variables to be zero (17, 1305). The
procedure then reads a string by calling procedure readstr (17, 1307).
If tempstr does not equal 'VARIABLES', then procedure error(err59) (17,
1309) is called to report an error. If no error occurs at this point,
procedure tranreg will start the Transformation pfocess. The procedure
first luncreases the number of regular variable history instances by omne.
The procedure then writes the headings (17, 1319-1321) of the regular
variable instance into the file historyfile for the procedure historynum
(20, 101l). Procedure tranreg then calls procedure provar (17, 1327) to
transform the SAN global variables into PASCAL global compatible
variables; and increases the number of regular variable history
instances‘by one; these steps are repeated until all the SAN global
variables are processed which is indicated by a delimiter semicolon

(17, 1336). At the end, procedure tranreg writes the string 'end' to

90

the file historyfile (20, 103) to indicate the end of all the variables
traced in a regular variable history instance.

Procedure trancon (17, 1349) is called by procedure tranvar to
transform the SAN global variables to PASCAL global compatible
variables, to transform the SAN boolean expression into a globally
compatible expression and to establish the boolean function conexp and
the procedure savehistcon for conditional variables to be traced as
described in Chapter IIIL.C.5. Procedure trancon goes through a
similar process to generate the procedure savehistcoun as if procedure
tranreg generates the procedure historynum. Procedure savehistcon is
stored in the file conhistfile. After processing all the SAN variables
to generate procedure savehistcon, procedure trancon continues to
transform the SAN boolean expression in the conditionmal variable history
instance. The procedure reads a string by calling the procedure readstr
(17, 1396). 1If tempstr does not equal 'CONDITION', then procedure
error(err54) (17, 1398) is called to report an error. The procedure
then writes the headings of the boolean expression to appear in the
boolean function conexp in the file conexpfile (17, 1402-1404). The
procedure transexp is called to transform the SAN boolean expression
into a globally compatible expression and to write it into the boolean
function counexp (20, 113). At the eund, procedure trancon writes the
string 'end' in the file comexpfile (20, 114) to indicate the end of the

boolean expression for a conditional variable history instance.

91

l4. Procedure tranexp

Procedure tranexp transforms the SAN boolean expressiomns of all the
regular expression history instances into globally compatible
expressions and puts all the PASCAL expressions together in the boolean
function cexpst (20, 135) as described in Chapter IIL.C.6. The
boolean function cexpst is stored in a temporary file cexpstfile.
Procedure tranexp first reads the expression history instance name (17,
1457) and temporarily stores the name in the global variable chist. The
procedure then reads another string. If tempstr equals 'regular', then
tranexp countinues to read another string, else procedure error(err53)
(17, 1465) is called to report an error. If the next string is not
'EXPRESSION' (17, 1470), then procedure tranexp reports an error by
calling procedure error(err5).

If no error is encountered at this point, procedure tranexp
increases the number of regular expression histories by one. The
procedure then writes the heading (17, 1479-1481) into the file
cexpstfile for the boolean function cexpst (20, 139). Procedure
trangexp 1s then called to transform the SAN boolean expression into a
globally compatible expression and to write into the boolean function
cexpst (20, 140). Procedure tramnexp then writes the string 'end' in the
file cexpstfile (20, 142). The procedure then skips all other
speclfication lines until the string 'END' or eof(sanfile) is
encountered. If procedure tramexp encounters end of file before the
string 'END', then it reports an error by calling procedure error(err?)

(17, 1509).

92

15. Procedure inisetgen

Procedure inisetgen (18, 608) generates the procedure iniset (20,
903) as described in Chapter III.C.7. Within the procedure
inisetgen, there is a procedure wsmws (18, 617-656), which is called by

procedure inisetgen to write the smword[i] and smsym[i] value of each

component (20, 905-914) in the file, inisetfifle. Procedure inisetgen
first writes the heading (18, 664—666) of the procedure iniset, which is
stored in the file inisetfile. In lines (18, 668-704), procedure

inigetgen writes all the corresponding smword(i] and smsym[i] into

procedure iniset (20, 905-914). Procedure inisetgen then writes the
first and last component name for each kind of component (18, 708-842)
into procedure iniset (18, 916-933). Procedure inisetgen continues to
write the set of component names of each kind of component (18, 846-854)
into procedure.igiggg (20, 934-942). Finally, procedure inisetgen
writes the array of string constants (18, 858-866) into procedure iniset

(20, 943-950), and writes the ending part of procedure iniset.

D. Data Input

The Data Input process reads the SAN system specification file to
configure the simulated system by establishing the interconnections, the
sets of state, inputs, and outputs, and output functions, and the next
state functions of the system’s components. This process also
establishes the necessary default values for system component and

simulator variables. The system specification syntax is also checked

v

93

agalnst the SAN syntax as described in Chapter II. The details of the
syantax checking will be mentioned as we walk through the implementation
of the Data Input process. If the Data Input process encounters any
syntax error, the process writes the error message to the error file,
named errfile, and stops.

The Data Input process is located in line 867 to line 898 in the
SAS main program (1, 867-898). The Data Input process first reads in a
character string to identify the kind of component to be processed. If
the character string equals 'FSM', 'CFP', CFS', 'DELP', 'DELS', 'QUE’',

'CLK', 'DER’', or 'ENV', then the procedure subfsm, subcfp, subcfs,

subdelp, subdels, subque, subclk, subder, or subenv, respectively, is

called to read information for the corresponding component (2, 867-884).
The above steps are continued until all the component specifications are
processed or the end of the SAN file eof(sanfile), is encountered.

If the character string does not identify one of the nine kinds of
components, the character string is examined to see 1if it denotes a
performance trace or initialization instance. If the character string
equals 'VARHISTORY', 'EXPHISTORY', or 'INIT', then the procedure

provarhist, proexphist, or proindata is called to read the appropriate

information from the SAN file (2, 876-885). These steps are continued
until all the performance trace instances and the initialization
instance are processed (i.e., until the end of the SAN file). If there
is any component instance other than that of a performance trace or
initialization instance, then an error is reported by calling the

procedure error{err33) (2, 894).

94

In the following subsections, we will describe the implementation
of all the major procedures of the Data Input process, namely: subfsm

(3, 2768), subcfp (3, 2847), subefs (3, 2901), subdelp (3, 2955),
subdels (3, 3000), subque (3, 3050), subclk (2, 3115), subder (3, 3167),

subenv (3, 3204), provarhist (4, 1006), proexphist (4, 1046), and

proindata (5, 745).

l. Procedure subfsm

Procedure subfsm (3, 2768) governs the sequence for processing each
FSM compounent specification. Procedure subfsm will call a set of

procedures, such as prosm, pros, proxp, proxs, prozp, prozs, profns,

profsmfoutp, and profsmfouts to process different lines of FSM component

specification. The function and the implementation details of these
procedures will be described after the description of the procedure
subfsm. We point out now that at the end of each of these procedures,
procedure readstr is called to read a character string for the next
procedure.

Procedure subfsm starts out by calling procedure prosm (3, 2773) to
process the first line of the FSM specification. Procedure subfsm then
expects the next line to be the state set specification. If the next
character string, tempstr, equals 'S', then procedure pros (3, 2775) is
called to process the 'Sline', as mentioned in the SAN syntax dlagram in
the Appendix; else, the procedure error(err2) is called to report
a syntax error. The next line should be the default initial state

specification. If tempstr equals 'defsinit', then procedure subfsm

95

processes the 'defsinitline'. Procedure readstr (3, 2783) is called to
read the default initial state value. The default initial state value
is checked as to whether it is a subset of the state set by calling the
procedure ckvalidset (3, 2785). If the default initial state value is
not a subset of the state set, then procedure error(err65) is called to
report an error (3, 2786); otherwise, the default initial state value is

inserted in the FSM component current state variable, fsm[tempsm].cs (3,

2789). Procedure readstr (3, 2792) is called to read a character string

for the next line.

If tempstr equals 'XP', then procedure proxp(fsmym) (3, 2798) is
called to process all the 'XPline' of the FSM component specification;
otherwise, procedure error(err3) is called to report an error. Since the
FSM specification has the option not to define any static input, pulsed
output or static output, the next line may be a XS, XP, or ZS line. If

tempstr equals 'XS', then procedure proxs(fsmsym) (3, 2800) is called to

process all the 'XSline'. If tempstr equals 'ZP', then procedure

prozp{fsmsym) (3, 2803) is called to process all the 'ZPline'. If

tempstr equals 'ZS', then procedure prozs(fsmsym) (3, 2808) is called to

process all the 'ZSline'.

After processing all the input and output specifications, procedure
subfsm starts to process the next state function and the output
function. For an FSM, there must be a next state function, FNS. If
tempstr equals 'FNS', then procedure profns (3, 2811) is called to
process the FNS specification, otherwise procedure error(err5) is

called. The FSM component may or may not have the FOUTP and FOUTS

96

defined. If tempstr equals 'FOUTP', then procedure profsmfoutp (3, 2817)

is called to process the FOUTP specification. If tempstr equals 'FOUTS',
then procedure profsmfouts (3, 2818) is called to process the FOUTS

specification.

At the end, procedure subfsm expects the specification of the
default execution time. If tempstr equals 'deftexec', then procedure
prodeft(4) (3, 2821) is called to read the default execution time;
otherwise, procedure error(err40) is called to report an error. The

default execution time is assigned to the variable, fsm|tempsm].texec

(3, 2824). After the default execution time, procedure subfsm expects
an 'END' followed by a semicolon. If that is true, procedure subfsm
finishes processing a FSM component; otherwise, procedure error(err?)

(3, 2831) is called.

The remaining parts of this sub-section will describe the function

and the implementation details of procedures prosm, pros, proxp, proxs,

prozp, prozs, profns, profsmfoutp, and profsmfouts, which are called by

procedure subfsm to read the FSM specification.

a. Procedure prosm (kind : smtype) (3, 1096): processes the

specification of the first line of the nine kinds of components.
Procedure prosm first checks if there is a blank character between the
specification of the kind and the component name. If it is not a blank
character, then procedure error(err24) is called. Procedure prosm then

calls procedure readstr and skipdel to read the name of the component

and skips all the blank characters following the component name.

Procedure cksmname(tempstr, tempsm, match) is then called to check if

97

the component name, identified by tempstr belongs to the set of
component names identified by the Transformation process. If the
component name belongs to those component names, the variable match is
set true and the component's corresponding enumerated name is assigned
to the variable tempsm (3, 1104). If the component name does not belong
to those component names, procedure error{err34) is called (3, 1108).
Procedure prosm continues to read another character string by calling

procedure readstr. If tempstr does not equal 'interlace', then procedure
q ’

error(err30) is called; otherwise, procedure readstr (3, 1113) is called
to read a character string. The character string will be used by the
parent procedure, who called the procedure prosm, to identify the next
line of the specificatlon. 1In this case, the parent procedure is

subfsm, which called procedure prosm to process the first line of a FSM
component specification. The next character string read by the

procedure readstr (3, 1113), at the end of the procedure prosm, should be
the state set character string, 'S'.

b. Procedure pros (3, 1120): processes the 'Sline'

specification of the FSM components. Procedure pros first checks if the
last character read by the procedure readstr is a blank character. If
the last character, c (3, 1125), is a blank character, then procedure
readstr is called to skip to the next delimiter. Procedure pros checks
if‘the delimeter is a colom (3, 1129); 1if c does not equal ':', then
procedure error(err20) is called.

Procedure pros continues to read the state set values by repeatedly

calling procedure readstr (3, 1135); each value 1s stored in a linked

98

list pointed to by the header, fsm[tempsm].S (3, 1145-1148). This
process is repeated until the delimiter is a semicolon (3, 1151). If
the number of state set values is greater than nSmax, which 1s 100, then
procedure error(err9) is called. At the end, procedure readstr is
called to read a character string for the next line of the

specification.

c. Procedure proxp(kind:smtype) (3, 1164): processes the

'XPline' specification of all the components. The local variable kind
(3, 1164) is passed to procedure proxp to identify the kind of component
being processed. In the beginning, the local variable i is initialized
to zero to indicate the number of processed XP inputs. In lines (3,
1179-1181), the number of processed XP input 1s lncreased by one, the XP
number 1s read by the read statement; and if the XP number, xpnum, does
not equal i then procedure error(errll) is called. Procedure readstr is
called. If temgétr does not equal 'FROM' or 'UNCONNECTED', then
procedure error(err3l) is called. If tempstr equals 'FROM' and the
delimiter is a blank or tab character, then procedure readstr (3, 1191)
is called to read the source component name. Procedure

cksmname(tempstr, sourcesm, match) (3, 1194) is called to check if

tempstr belongs to the predefined component names. If it does,
procedure cksmname returns with the variable match equal to true and
the variable sourcesm equal to the correspounding enumerated name of the
component.

In lines (3, 1200-1214), if the source is unconnected, then

procedure skipdel (3, 1200) is called to skip to the next delimiter;

99

else, the regular pulsed output specification, ZP.n, is processed
from line (3, 1203) to line (3, 1212). 1In line (3, 1213) the delimiter
colon, which separates the source input and the input set

specification, is checked.

In lines (3, 1217-1290), the XP input values are read and stored
into the XP[i] linked list of the corresponding component. An XP input
value is read by calling procedure readstr (3, 1218). If the delimiter
between two XP input values is not a comma or a semicolon, then
procedure error(err2l) (3, 1220) is called; or if the first character im

the XP input value is a delimiter, then procedure error(errlQ) is called.

Procedure new(stringpt) (3, 1223) is called to create a new stringset

(1, 206) to store the XP input value (3, 1225-1226). Depending on the
kind of component, the stringset is inserted into its corresponding
linked 1list. In the case of a FSM component, the new stringset pointed
to by the pointer stringpt is inserted at the end of the linked list

fsm{tempsm].XP[xpnuum] (3, 1230-1236), where tempsm is the component

enumerated name and Xpnum is the current XP number. This process is

repeated until the delimiter after the XP input string is a semicolon
(3, 1290). At the end, in lines (3, 1295-1322) a new stringset with a
null character, '-', is created and inserted into the corresponding XP
input set. In line (3, 1325), procedure readstr is called; if tempstr
equals 'XP', which means another 'XPline' needed to be processed. The
procedure proxp will go back to lime (3, 1175) to process another XP

input. If tempstr does not equal 'XP', the number of the processed XP

inputs are recorded (3, 1328-1335). This ends the procedure proxp.

100

d. Procedure proxs(kind:smtype) (3, 1344): processes the

'XSline' specification of all the components. The 'XSline'
specification is the same as the 'XPline' specification, except that

the 'XP' in the 'XPline' specification is replaced by 'XS'. In the same
manner, procedure proxs is the same as procedure proxp, except that the
former is used to process 'XP' inputs and the latter is used to process
'XS' inputs.

e. Procedure prozp(kind:smtype) (3, 1502): processes the

'ZPline' specification of all the components. The local variable kind
(3, 1502) is passed to procedure prozp to identify the kind of component
being processed. In the beginning, the local variable i is initialized
to zero to indicate the number of processed ZP outputs.

The repeat loop (3, 1515-1757) processes ome ZP output. At first,
the number of the processed ZP output is increased by one; and the ZP
number, zpnum is read (3, 1519-1523). 1If the ZP number is not in
sequence, then procedure error(errl3) is called. The procedure readstr
(3, 1527) is called to read the character string 'TO' or 'UNCONNECTED'.
Lines (3, 1528-1543) check the character string and the delimiter after
the character string. In line (3, 1547), the local variable j is set to

zero to indicate the number of destinations from this ZP output

(fanout).

The second repeat loop (3, 1549-1628), which resides within the
first repeat loop (3, 1515-1757), reads the destination names and stores

them into the component's data structure. If tempstr does not equal

'UNCONNECTED', then it reads the destination name (3, 1553-1577). 1In line

101

(3, 1580) the local variable, j, indicating the number of destinations
is increased by one. The destination component kind:destkind,
name:destname, and pulsed input number:xpnum are recorded in the data
structure of the processing component (3, 1581-1617). The second level
repeat loop is repeated until the delimiter following the destination
name is not a comma (3, 1618).

Lines (3, 1622-1631) record the number of fanouts for the
particular pulsed output. Procedure prozp then checks if the delimiter
between the destination name and the output set is a colon. If it is a
colon, then procedure error(err20) is called.

The third repeat loop (3, 1638-1717), which also resides within the
first repeat loop, reads the pulsed output set values and stores them
into the component's data structure. The procedure readstr (3, 1639) is
called to read an output string. If the delimiter following the
output string is not a comma or semicolon, then procedure error(err2l)
is calléd; if the output string is a delimiter, then procedure

error(errl0) is called. Procedure new(stringpt) (3, 1649) is called to

create a new stringset to record the output string (3, 1647-1648).
Depending on the kind of the component being processed, the new
stringset is inserted at the end of the corresponding linked list. In
the case of a FSM component, the new stringset pointed to by the

polnter stringpt (3, 1646) is inserted at the end of the linked list

pointed to by the pointer, fsm[tempsm].zp[zpnum] (3, 1652-1658), where

tempsm is the component enumerated name and zpnum is the current ZP

number. This repeat loop (3, 1638-1717) is repeated until the delimiter

102

after the ZP output string is a semicolon (3, 1717). At the end, in

lines (3, 1721-1752) a new stringset with a null character, '-', is

created and inserted into the corresponding ZP output set. In line (3,
1756), procedure readstr is called; if tempstr equals 'ZP', which meauns
another 'Zline' needs to be processed, the first repeat loop (3, 1515-1757)
is repeated. If tempstr does not equal 'ZP', the number of the processed
ZP outputs is recorded (3, 1760-1768). This ends the procedure prozp.

f. Procedure prozs(kind:smtype) (3, 1778): processes the

'ZS1line' specification of all the components. The 'ZSline'’
specification is the same as the 'ZPline' specification, except that the
ZP in the 'ZPline' specification is replaced by 'ZS'. In the same
manner, procedure prozs 1s the same as procedure prozp, except that the

former is used to process 'ZP' inputs and the latter is used to process

the 'ZS' inputs.

&+ Procedure profns (3, 2301): processes the next state

function (FNS) specification of the FSM component. Procedure profns
first checks if the delimiter following the string 'FNS' is a colon. If
the delimiter is not a colon, then procedure error(err20) (3, 2312) is
called. Procedure readstr (3, 2315) is called to read the type of FNS
specification. If tempstr equals 'list', then the FNS list specification
will be processed (3, 2319); else, if tempstr equals 'procedure', then the
FNS procedure specification will be processed; otherwise, procedure
error(err50) is called (3, 2448).

Lines (3, 2319-2439) processes the FNS list specification. The

type of FNS specification is first recorded (3, 2324). Procedure

103

readstr (3, 2326) is called to read the string for the current state.
Procedure profns then starts with the repeat loop (3, 2329-2439) to
process a FNS transition. Whether the string for the current state is an
element of the FSM component state set is checked by calling the

procedure ckvalidset(fsm[tempsm].S,tempstr) (3, 2331). If tempstr is

not an element and does not equal don't care, '*', then procedure
error(err65) is called to create a record element to record the string
for the current state (3, 2335-2337). Procedure profus then checks if
the delimiter following the current state value is a slash, '/'. If
the delimiter is not a slash, then procedure error(errl9) (3, 2340) is
called.

Line (3, 2343) checks if there 1s any pulsed input string to be
read. If there is, the loop (3, 2348-2358) will read in the string for
the pulsed inputs and store them in the array, fnspta.xp[i] (3, 2355).
The loop is repeated until the delimiter after the pulsed input string
is not a comma (3, 2358). If the number of pulsed input strings read
does not equal the number of pulsed inputs specified for the component
instance, then procedure error(errl5) is called.

Line (3, 2363) checks if there 1s any static input string to be
read. If it 1s true, the loop (3, 2371-2379) will read in the string
for the static inputs and store them in the array, fusptA.xs[i] (3,
3275). The loop is repeated until the delimiter after the static input
string is not a comma (3, 2379). If the number of static input strings
read does not equal the number of static inputs specified for the

component instance, then procedure error (errl5) is called.

104

Procedure rdimply (3, 2385) is called to read the special character
string, '=>'. If tempstr does not equal '=>', then procedure
error(errl6) (3, 2388) is called. Procedure readstr (3, 2392) is called
to read the next state string. Lines (3, 2401-2417) check if the next
state string is a string constant or used as a local input or output
variable to identify the string by calling the procedure

ckst(st,tempsym,num) (3, 2404). If the next state string is a string

constant, the string constant is stored in the variable,

fonsptA.nexts.sval (3, 2411l). If the next state string is a local input

or output variable, the kind of local input or output (cxp, cxs, czp,

czs) is stored in the variable, fusptas.nexts.id and the input or output

number is stored in the variable, fnsptA.nexts.num. At the end, the

record for the FNS transition pointed to by the pointer, fuspt, is
inserted into the FSM component's FNS entry linked 1list, which is

pointed to by the pointer, fsm[tempsm].fnsfirst (3, 2421-2429).

Procedure readstr (3, 2435) is called to read another string. If
tempstr does not equal 'END', then the loop (3, 2329-2439) is repeated to
process another transition; otherwise, the list specification is done.
Lines (3, 2443-2448) process the FNS procedure specification.
Since the procedure had been extracted and transformed during the
Transformation process; all the procedure profus has to do in the Data
Input process is to record the type of the FNS specification (3, 2445)
and thé procedure number for the FSM component kind (3, 2447), which is
equal to the case index. This procedure will be referenced by the SAS.

The procedure skipproc is called to skip to the end of the procedure (3,

105

2447). Procedure readstr (3, 2451) is called to read another string for

the next line of the specification.

h. Procedure profsmfoutp (3, 2134): processes the pulsed

output fuanction (FOUTP) specification of the FSM component. The FOUTP
specification also has either the list or procedure type. The format
for the procedure type is the same as the FNS procedure. The format for
the list type is similar to FNS list, except that in each transition
line the FNS has only one character string for the next state value
while the FOUTP may have multiple character strings for the next pulsed
output values. The implementation of procedure profsmfoutp is similar
to the procedure profus except for the above difference. Readers can
refer to the explanation of procedure profns to understand the
implementation of procedure profsmfoutp (3, 2134-2289).

1. Procedure profsmfouts (3, 2013): processes the static

output function (FOUTS) specification of the FSM compoment. The format
in specifying the FOUTS is similar to FNS and FOUTP. The details can be
referred to in Chapter II.B. The approach to implement procedure

profsmfouts is similar to the implementation of procedure profus.

Readers can refer to the explanation of procedure profns to understand

the implementation of procedure profsmfouts (3, 2013-2122).

2. Procedure subcfp and subcfs

Procedure subcfp (3, 2847) governs the sequence of processing the
CFP component specification. Procedure subcfp starts out by calling

procedure prosm (3, 2855) to process the first line of the CFP

106

specification. If the next character string is 'XP', then procedure

proxp(cfpsym) (3, 2858) is called to process all the 'XPline' of the CFP

component specification; else, procedure error(err3) is called.
Since the CFP specification has the option not to define any static
input, the next line may be a XS or ZS line. If tempstr equals 'XS',

then procedure proxs(cfpsym) (3, 2863) is called to process all the

'XSline's If tempstr equals 'ZP', then procedure prozp(cfpsym) (3, 2866)
is called to process all the 'ZPline'.

After processing all the input and output specifications, procedure
subcfp starts to process the pulsed output function. If tempstr equals
'"FOUTP', then procedure procfpfoutp (3, 2871) is called to process the
FOUTP specification, else procedure error(err6) is called. The
details of the implementation of procedure procfpfoutp in lines (3,
2603-2758), are similar to the implementation of procedure profsmfoutp
(3, 2134-2289). At the end, procedure subcfp expects the specification
of the default execution time. If tempstr equals 'deftexec', then
procedure prodeft(r) (3, 2876) is called to read the default execution
time, otherwise procedure error(err40) is called. The default execution

time is assigned to the variable, cfp[tempsm].texec (3, 2879).

Procedure subcfp then expects an 'END' followed by a semicolon. If
tempstr equais.'éND' and the delimiter is a semicolon, procedure subcfp
finishes processing a CFP component; else, procedure error(err?) (3,
2883) is called.

Procedure subcfs (3, 2901) governs the sequence of processing the

CFS component specification. The implementation details of procedure

107

subcfs are similar to procedure subcfp, which had been explained in the

above paragraphs.

3. Procedure subdelp and subdels

Procedure subdelp (3, 2955) governs the sequence of processing the

DELP component specification. Procedure subdelp starts out by calling

procedure prosm(delpsym) (3, 2963) to process the first line of the DELP

specification. Procedure subdelp then processes the XP input. 1If

tempstr equals 'XP', then procedure proxp(delpsym) (3, 2966) is called to

process the 'XPline' of the DELP compomneut specification; else,
procedure error(err3) is called. The next step is to process the

'ZPline'. If tempstr equals 'ZP', then procedure_prozp(delsym) (3,

2972) is called to process the 'ZPline' of the DELP component
.specification, else procedure error(err4) is called. Procedure
subdelp starts to record the default delay time by calling procedure
prodeft; else, procedure error(err4l) is called. The default delay

time 1s saved in the variable, delp[tempsm].tdel. Procedure readstr is

called to read another character string. If tempstr does not equal
'END' or the delimiter following the string is not a semicolon, then
procedure error(err?) is called to report an error, else, procedure
subdelp finishes processing a DELP component.

Procedure subdels (3, 3000) governs the sequence of processing the
DELS component specification. The DELS specification is similar to the

DELP specification except that XP and ZP in the DELP specification are

108

replaced by XS and ZS. The implementation of procedure subdels is also

similar to the implementation of procedure subdelp.

4. Procedure subque

Procedure subque (3, 3050) governs the sequence of processing the

QUE component specification. Procedure subque starts out by calling

procedure prosm(quesym) (3, 3058) to process the first line of the QUE

specification. Procedure subque then processes the XP inputs. If

tempstr equals 'XP', then procedure proxp(quesym) (3, 3061) is called to
process the 'XPline' of the QUE component specification; otherwise,
procedure error(err3) (3, 3062) is called. The next step is to process

the 'ZPline'. If tempstr equals 'ZP', then procedure prozp(quesym) (3,

3067) is called to process the 'ZPline'; else, procedure error(erré)

(3, 3068) is called. After processing ZP, procedure subque expects a

'ZSline'. If tempstr equals 'ZS', then procedure prozs(quesym) (3,
3074) is called to process the 'ZSline'; else, procedure error(err4)
(3, 3075) is called. |

Procedure gubque sets the initial state, size, queue pointer and
static output of the queue (3, 3079-3082). Procedure subque continues
to process the default enqueue and dequeue time. If tempstr equals

'deftenq', then procedure prodeft(r) is called to read the default
prodettir)

enqueue time; else, procedure error(err42) is called. The default

enqueue time is assigned to the variable quef[tempsm].tenq (3, 3088).

Procedure readstr (3, 3090) is called to read the string 'deftdeq'. If

tempstr equals 'deftdeq', then procedure prodeft(r) is called to read the

109

default dequeue time; else, procedure error(err43) (3, 3092) is
called. The default dequeue time is assigned to the variable

que[tempsm].tdeq (3, 3098). Procedure readstr is called to read the

string 'END'. If tempstr does not equal 'END' or the delimiter

following 'END' is not a semicolon, then procedure error(err?) is

called; otherwise procedure subque is finished.

3. Procedure subclk

Procedure subclk (3, 3115) governs the sequences of processing the
CLK component specification. Procedure subclk starts out by calling

procedure prosm{clksym) (3, 3123) to process the first line of the CLK

specification. Procedure subclk then processes the XP input. If

tempstr equals 'XP', then procedure proxp(clksym) (3, 3126) is called to

process the 'XPline'j else, procedure error(err3) (3, 3127) is

called. The next step 1s to process the 'ZPline'. If tempstr equals

'ZP', then procedure prozp(clksym) (3, 3132) is called to process the

'ZPline'; otherwise, procedure error(err4) (3, 3133) is called. After
processing ZP, procedure subclk expects a 'ZSline'; else, procedure
errof(err4) (3, 3138) is called.

Procedure subclk sets the initial state and static output of the
CLK component (3, 3142-3143). Procedure subclk continues to process the
default clock period. If tempstr equals 'deftclk', then procedure
prodeft(r) is called to read the default clock period; else,
procedure error(err44) (3, 3146) is called. The default clock period is

assigned to the variable clk[tempsm].tclk (3, 3148). Procedure readstr

110

is called to read the string 'END'. If tempstr does not equal 'END' or
the delimiter following 'END' is not a semicolon, then procedure

error(err’7) is called; else, procedure subclk is finished.

6. Procedure subder

Procedure subder (3, 3167) governs the sequence of processing the
DER component speclfication. Procedure subder starts out by calling

procedure prosm(dersym) (3, 3174) to process the first line of the DER

specification. Procedure subder then processes the XS input. If

tempstr equals 'XS', then procedure proxs(dersym) (3, 3177) is called to
Lempstr

process the 'XSline'; else, procedure error(err3) (3, 3178) is

called. The next step is to process the 'ZPline'. If tempstr equals

'ZP', then procedure prozp(dersym) (3, 3183) is called to process the

'ZPline'; else, procedure error(err4) (3, 3184) is called. At the
end, procedure subder checks for the string 'END' following with a
semicolon. If tempstr does not equal 'END' or the delimiter following

'END' is not a semicolon, then procedure error(err7) is called to report

error; else, procedure subder is finished.

/. Procedure subenv

Procedure subenv (3, 3204) governs the sequence of processing the
ENV component specification. Procedure subenv starts out by calling

procedure prosm(envsym) (3, 3214) to process the first line of the ENV

specification. Since the specification of the inputs and outputs are

optional in an ENV component, the next line may be an XP, XS, ZP or 2S

111

line. First, it checks if tempstr equals 'XP'; then procedure

proxp(envsym) (3, 3217) is called to process all the 'XPline'. Second,

it checks if tempstr equals 'XS'; then procedure proxs(envsym) (3, 3218)

1s called to process all the 'XSline'. Third, it checks 1f tempstr

equals 'ZP'; then procedure prozp(envsym) (3, 3220) is called to process

’

all the 'ZPline'. Fourth, it checks if tempstr equals 'ZS'; then

procedure prozs(envsym) is called to process all the 'ZSline'.

After processing all the input and output specifications, procedure
subenv starts to process the ENV function. If tempstr equals 'FUNCTION'
(3, 3224), then it processes the ENV function specification (3, 3226-~
3246); else, procedure error(err36) (3, 3247) is called. To process
the ENV function specification, procedure readstr (3, 3229) is called to
read the type of ENV function. If tempstr equals 'terminal', then the

type of ENV function is recorded in the variable env{tempsm}.func (3,

3222); else, if tempstr equals 'procedure', then the ENV function variable
is recorded as procedure type (3, 3240); the number of ENV procedure is
increased by one; and the procedure specification is skipped by calling

procedure skipproc; otherwise, procedure error(err5l) (3, 3243-3244) is

called.

Procedure readstr (3, 3250) is called to read another character

string. If the component has static outputs (3, 3252), then the
character string should be 'defzsinit'. If tempstr equals 'defzsinit’,

then procedure prodefzs(envsym.tempsm) (3, 3255) is called to read in

the default static output values; else, procedure error(err45) is

called. Procedure subenv continues by reading in the default execution

112

time. If tempstr equals 'deftexec', then procedure prodeft(r) (3, 3261)
is called to read the default execution time; else, procedure
error(err40) is called. The default execution time is assigned to the

variable env[tempsm].texec (3, 3265). Procedure readstr (3, 3267) is

called to read another character string. If tempstr equals
'mulpulsecheck’, then procedure readstr (3, 3273) is called again to
read another string. If tempstr equals 'false', themn the variable

eunv[tempsm].mulpulsecheck is set to false else the variable is set to

true (3, 3274-3277). 1f tempstr does not equal 'mulpulsecheck', then by
default the variale env[tempsm].mulpulsecheck is set to false (3, 3272).
Procedure subenv starts to process the start expression, STARTEXP,
specification. If tempstr equals 'STARTEXP', then procedure skipexp (3,
3285) is called to skip to the end of the expression (since the
expression had been transformed in the Transformatiom process); otherwise
procedure error(err37) is called. The number of the ENV start
expression is increased by one, and stored in the variable

env{tempsm].envexpno (3, 3289-3290). Procedure readstr (3, 3293) is

called to read the string 'STATREXPCHECK'. If tempstr equals

'STARTEXPCHECK', then procedure readstr (3, 3299) is called again to read
another string. If tempstr equals 'never', then the variable

env[tempsm].checkopt is set to never; else, if tempstr equals

'everyevent', then the variable 1s set to everyevent; else, if tempstr

equals 'everytimechange', then the variable is set to everytimechange,

else procedure error(err39) is called (3, 3300-3303). If tempstr does

not equal 'STARTEXPCHECK', then procedure error(err38) (3, 3305) is

113

called. Procedure readstr (3, 3306) is called to read 'END'. If
tempstr does not equal 'END', or the delimiter following 'END' is not a
semicolon, then procedure error(err?) (3, 3308) is called. At the end

all the pulsed outputs of the ENV component are set to null, '-',

8. Procedure provarhist, provarreg and provarcon

Procedure provarhist (4, 1006) processes the variable history
(VARHISTORY) specification. It checks if the VARHISTORY is of type

regular or conditional, then procedure provarreg or provarcon,

respectively, is called to'process the specification. Procedure
provarhist starts out to check if there 1s a blank character after the
string 'VARHISTORY'. If it is not a blank character, then procedure
error(err24) (4, 1015) is called. Procedure readstr (4, 1019) is called
to read the variable history instance name. The instance name is
temporarily saved in the local variable histname (4, 1022). Procedure
provarhist then checks for a colon after the instance name (4, 1025).

Procedure readstr (4, 1029) is called again to read another string. If

tempstr equals 'regular', then procedure provarreg(histname) is called to
process the regular variable history instance; else, if tempstr equals

'conditional', then procedure provarcon(histname) is called to process

the conditional variable history instance, else procedure error(err53)
(4, 1035) is called.

Procedure provarreg(histname:string) (4, 908) processes the regular

variable history instance specification. Procedure provarreg starts out

to create a new record for the regular variable history instance by

114

calling procedure new(regpt) (4, 915). The record is pointed to by

pointer regpt. The details on the record elements can be seen in the
data structure file (1, 529-538). The instance name is saved in the

element regptA.hlstname, and the pointer to the next instance record is

set to nil (4, 919-920). The current regular variable history instance
record is added to the end of the regular variable history instance
linked 1list (4, 926-937). The header of the linked list is pointed to
by the pointer, varhistregpt (4, 924). The local variable temp is set
to point to the current regular variable history instance record (4,
940). The integer, i, identifying the number of regular variable
history instances is saved in the element, tempsA.num. Procedure

provar(temphist) (4, 946) is called to read in the set of variable names

and create a linked list for the set of variables; procedure

provar(temphist) also returns a linked list pointer, temphist, pointing

to the beginning of the variable linked list. The linked list is saved
by assigning temphist to the current regular variable history instance

record element, tempa.varstat (4, 949).

Procedure readstr (4, 952) is called to read the string 'DHISTORY'.
If tempstr does not equal 'DTHISTORY', then procedure error(err5l) (4,
958) is called. The time interval for 'DTHISTORY' is read by calling

the procedure read(sanfile,r) (4, 962). The time interval is stored in

the element, tempA.dthist (4, 968). Procedure readstr (4, 970) is
called to read the delimiter semicolon. If it i1s not a semicolon, then
procedure error(err22) is called. Procedure readstr (4, 976) is called

to read the string 'CHECKOPT'. If tempstr equals 'CHECKOPT', then

115

procedure readstr (4, 982) is called again to read the check option
string. If tempstr equals 'never', then the regular variable history

instance record element, tempsa.checkopt, 1s set to never; else, 1if

tempstr equals 'everyevent', then tempa.checkopt 1is set to everyevent;

else, if tempstr equals 'everytimechange', then tempA.checkopt is set to

everytimechange; else procedure error(err39) is called (4, 982-989).

Procedure readstr (4, 794) is called to read 'END'. If tempstr does not
equal 'END' and the delimiter following 'END' is not a semicolom, then
procedure error(err7) is called; else, procedure provarreg is

finished.

Procedure provarcon(histname:string) (4, 822) processes the

conditional variable history instance specifications. Procedure
provarcon starts out by creating a new record for the conditional
variable history instance by calling procedure new(conpt) (4, 830). The
record is pointed to by pointer comnpt. The details on the record
elements can be seen in the data structure file (1, 542-549). The

instance name 1s saved in the element conptA.histname and the pointer

to the next instance record is set to nil (4, 833~834). The current
conditional variable history instance record is added to the end of the
conditional variable history instances linked list (4, 838~851). The
header of the linked list is pointed to by the pointer, varhistcoupt (4,
838). The local variable temp is set to point to the curremt
conditional varjable history instance record (4, 854). The integer i
identifying the number of conditional variable history expressions is

saved in the element, tempA.num (4, 857). Procedure provar(temphist)

116

(4, 860) is called to read in the set of variable names and create a

linked 1list for the set of variables; procedure provar(temphist) also

returns a linked list pointer, temphist, pointing to the beginning of
the linked 1list. The linked list is saved by assigning temphist to the

current conditional variable history instance record element,

tempa,varstat (4, 863).

Procedure readstr (4, 866) is called to read the string
'CONDITION'. If tempstr equals 'CONDITION', then procedure skipexp is
called to skip to the end of the boolean expression; otherwise procedure
error(err54) is called (3, 872-873). The boolean expression is skipped
because the boolean expression had been transformed by the
Transformation process. Procedure readstr (4, 878) is called to read
the string 'CHECKOPT'. If tempstr equals 'CHECKOPT', then procedure
readstr (4, 884) is called again to read the check option string. If
tempstr equals 'mever', then the conditional variable history instance

record element, tempa.checkopt, is set to never; else, if tempstr equals

'everyevent', then temps.checkopt is set to everyevent; else, if

tempstr equals 'everytimechange', then tempA.checkopt is set to
tempstr

everytimechange; else, procedure error(err39) is called (4, 882-891),

Procedure readstr (4, B896) is called to read 'END'. If tempstr does not

equal 'END', and the delimiter following 'END' is not a semicolon then
procedure error(err’) is called (4, 897); else, procedure provarcon

is fiunished.

117

9. Procedure proexphist

Procedure proexphist (4, 1046) processes the expression history

(EXPHISTORY) specification. Procedure proexphist starts out to check

if there 1s a blank character after the string 'EXPHISTORY'. If it is
not a blank character, then procedure error(err24) (4, 1058) is called.
Procedure readstr (4, 1061) is called to read the expression history
instance name. The instance name is temporarily saved in the local
variable histname (4, 1064). Procedure proexphist then checks for a
colon after the instance name (4, 1067). Procedure readstr (4, 1071) is
called again to read another string. If tempstr equals 'regular', then
the expression history instance specification will be processed (4,
1076-1160); otherwise procedure error(err53) is called to report an
error. .

In line (4, 1076), procedure new(exppt) is called to create a new
record for the expression variable history instance. The details on the
record elements can be seen in the data structure file (1, 552-561).

The instance name is saved in the element expptA.histname; the pointer

to the next instance record is set to nil; and the pointer to the

expression status record, expptrexpstat, is also set to nil (4, 1079-

1081). The curreat expression history instance record is added to the
end of the expression history instance linked list (4, 1085-1098). The
header of the linked list is pointed to by the pointer, exphistpt (4,
1085). The local variable temp is set to point to the curremt
expression history instance recgrd‘k4, 1111). The integer i identifying

the number of the expression history instance is saved in the element,

118

temp .oum (4, 1104). Procedure readstr (4, 1107) is called to read the
string 'EXPRESSION'. If tempstr equals 'EXPRESSION', then procedure
skipexp (4, 1109) is called to skip to the end of the boolean
expression; else, procedure error(err55) is called. The boolean
expression 1s skipped because it had been transformed by the
Transformation process into a global boolean expression. The remaining
lines of procedure proexphist process the DTHISTORY and the CHECKOPT
specification, which is the same as that of procedure provarreg (4,
908). Readers can refer to Chapter IIIL.D.7 to follow the

explanation of procedure provarreg.

10. Procedure proindata

Procedure proindata (5, 745) processes the initialization
specification. In the initialization instaunce, users are allowed to

initialize the simulation beginning and ending time (tbeg and tend), the

seed value for the random number generator (seed), and to set the

variable, mulpulsecheck, to indicate whether multiple pulses arriving

simultaneously at a component are trapped or not.

The loop (5, 757-822) allows the initialization of the above
variables to appear in any order. The loop is repeated until the string
'END' is encountered. This loop does not detect multiple
initialization of variables, but procedure proindata leaves only the
last initializiation value of the variable.

Procedure readstr (5, 758) is called to read a string. If tempstr

equals 'tbeg', then procedure read(sanfile,lr) is called to read the tbeg

119

value (5, 762-771); else, if tempstr equals 'tend', then procedure

read(sanfile,lr) is called to read the tend value (5, 777-786); else, if

tempstr equals 'seed', then procedure read(sanfile,i) 1s called to read

the seed value; else, if tempstr equals 'mulpulsecheck', then the boolean

value 1s read to assign to the varilable, mulpulsecheck (5, 803-814);

else, if tempstr equals 'END', then procedure proindata finishes

processing the initialization instance; else procedure error(err?) is

called.

E. Initialization

The Initialization process initializes the user defined system to
some predefined states, in which the system is ready to be executed in
the SAS environment. The Initialization process is located in lines
(900-908) in the.SAS main program (2, 900~908). There are two kinds of
initialization processes, namely New Initialization and Restart
Initialization. Right after the Data Input process, the user terminal
will display a line to ask if New Initialization or Restart
Initialization is to be invoked (2, 900). If Restart Initialization is

to be invoked, then procedure reset{rsfile) (2, 904) is called to open

the restart initialization file, rsfile, to be read; procedure

reload(rsfile) (2, 905) is called to reload the system status from

rsfile file; and procedure close(rsfile) is called to close the rsfile

file (2, 906). Else, procedure iniload (2, 908) is called to start

the New Initialization process.

120

l. New Initialization process

New Initialization process assumes that all of the system

components are in their default initial states and default initial

static outputs as defined in the SAN system specification. All the

pulsed inputs and outputs are assigned with a string null, '-'.

Basically the New Initialization process does the following:

a)

b)

c)

d)

Maps the initial state of all FSM, QUE, and CLK instances into
their corresponding static outputs.

Loads all the static outputs of all FSM, CFP, CFS, DELS, QUE,
CLK and ENV instances into their corresponding destination
static inputs. If the destination instance is a DER, then
sets the current state of the DER instance equal to its
current static input (the current state of a DER instance
always equals the static input of the DER except at the moment
at which a static input transition takes place which is
supposed to be instantaneous).

Checks if the current static outputs of all the CFS components
are equal to the FOUTS mapping of their current static in-
puts, and the current static outputs of all the DELS
components equal to their current static inputs. If they are
equal, then the system is initilally stable else the system is
initially not stable.

Initializes all the regular variable history instance and
expression history instance next data collection times to

tnow.

121

e) Finally, control is given to the System Executive to start the

system execution.

Procedure iniload (7, 890) implements the New Initialization
process. Procedure iniload starts out to set tnow equal to TINIT, the
beginning time of the initialization period (7, 904). Procedure iniload
then maps the initial state of all the FSM components into their
corresponding static outputs and loads the static outputs into their
destinations. Line (7, 909) checks if the variable fsml, representing

the last FSM component, equals fsmO. If fsml equals fsmO, which means

there is no user defined FSM component, themn the FSM component
initialization process is skipped, else the for loop (910-933)
initializes all the FSM componeﬁts, starting from the first FSM
component fsmf to the last FSM component fsml, as follows:
a) sets the next state value equal to the current state (7, 914),
b) executes the Static Output Function (FOUTS) to map the curreat
state into current static outputs (7, 915-918).

c) initializes all the pulsed inputs and outputs to null (7, 920-
926),

d) loads all the static outputs into their corresponding
distination inputs (7, 927-931).

In a similar manner, lines (7, 938-952), the initial state, static
output, pulsed inputs and pulsed outputs of all the QUE component are
initialized. Lines (7, 957-970) initialize the initial state, static
output, pulsed input and pulsed output of all the CLK components. Lines

(7, 974-984) initialize the static outputs of all the CFS components.

122

Lines (7, 988-990) load the static output of all the DELS components
into their destinatious. Lines (7, 995-1000) initialize the current
state and the pulsed output of all the DER components. Lines (7, 1004-
1017) initialize the pulsed inputs and outputs of all the CFP components
to null, and load the pulsed outputs into their destination components
and initialize all the pulsed inputs to null., Lines (7, 1021-1026)
initialize the pulsed lnput and output of all the DELP components to
null. Lines (7, 1032-1044) load the static outputs of all the ENV
components into their destination components and initialize all the
pulsed input to null. Procedure inistab (7, 1046) is called to check 1if
the system is initially stable or not (the details of procedure inistab
will be explained in the next paragraph). If the system is stable, the
current simulation time (tnow) is set to tbeg. The event file pointer
is set to nil (7, 1052). Procedure rexs (7, 1054) is called to reset
the loading status of all the static inputs, indicating that none of the
static inputs have been changed at the current simulation time.
Procedure restatus (7, 1056) is called to reset all the CFS, DELS, and
DER components execution status to idle, because their execution status
may be set to pend state during the stability test. The SAS defined ENV
components (SYSTEM-MONITOR and env0) are initialized as terminal ENVs
with check option equal never (7, 1059-1065). The next data collection
times of all the regular variable history and expression history
instances are set to tnow (7, 1069-108l). This completes the New

Initialization process.

123

Procedure inistab (7, 769) checks if the user defined system is
initially stable or not. SAS expects users to define the lunitial value
of the system components such that the current static outputs of all the
CFS components are equal to the FOUTS mapping of their current static
Inputs and the current static outputs of all the DELS components equal
thelr current static inputs. Procedure inistab will execute the FOUTS
of all the CFS components to check if there are any discrepancies in the
static outputs of the CFS components. Procedure inistab also checks if
the current static outputs of all the DELS component equal their current
static inputs. If the system is initialized according to the above
conditions, there should be no change in the outputs of the CFS components
and the current static outputs of the DELS components should equal their
current static inputs. In this case, the system is said to be stable,
otherwise the system is unstable.

) Procedure inistab starts out to assume the system is stable (7,
776). The FOUTS of each CFS component 1s executed. The next static
output values are compared to the current static output values; if
they are not equal, then the variable stable is set to false and the name
of the unstable component name is recorded\(?, 779-795). Procedure
inistab continues to check if the static output of each DELS component
equals its static input. If any of them is not equal, then the local
variable stable is set to false and the unstable component name is

recorded. If the user defined system is stable, then the message 'SYSTEM

IS STABLE' is printed on the terminal else the message 'SYSTEM IS

124

UNSTABLE' is printed on the terminal. These complete the stability

testse.

2. Restart Initialization process

The Restart Initialization process allows users to continue the

execution of the user defined system from the state in which the

previous run stopped.

This process requires the final status of the

total simulation system to be saved at the end of the previous

simulation run.

The final status of the total simulation system is

stored in the restart file, rsfile, according to the following steps:

a)

b)

c)

d)

e)

The ¢s, cxp, cxs, czp, czs, cxsload, texec, execstatus, and

the update state records of all FSM components are saved. The

update state record contains the nts, ntzp, ntzs and the

update time of the component.

The cxp, cxs,
state records
The cxs, czs,
record of all

The cxp, czp,

czp, cxsload, texec, execstatus, and the updadte
of all CFP components are saved.

cxsload, texec, execstatus and the update—state
CFS components are saved.

tdel, execstatus and the delay link record of

all DELP components are saved. The delay link record contains

all the pulsed or transition values which will be loaded into

the pulsed output.

The cxs, czs,

tdel, execstatus and the delay link record of

all DELS components are saved.

125

£) The cxp, czp, czs, tenq, tdeq, engstatus, deqstatus and the
queue status of all QUE components are saved. The queue status
contains the state, the size and all the data elements of the
QUE compounent.
g) The c¢s, cxp, czp, czs,.tclk, execstatus, and the update-state
of all CLK components are saved.
h) The cs, cxs, czp and execstatus of all DER components are
saved.
i) The cxp, cxs, czp, czs, cxsload, texec, execstatus, tstart,
and the update-state record of all ENV components are saved.
j) All the elements of the event file are saved.
k) The last executed component kind, component name,
event type, tnow, tprev, tfin, and mulpulse value are saved.
In order to continue the system execution from the state in which
the previous run stopped, the simulator will start with the Data Input
process to rgconfigure the system. Then the simulator gives control to
the Restart initialization process which in effect follows the above
steps to retrieve all the information stored in the restart file,
rsfile. At this point all the system components' status and the
simulator variables have the same value when the system execution was
stopped last time. The simulator then gives control to the System
Executive to start system execution again.
Performance data collected during the last system execution are not
restored. The linked list records for performance data storage are re-

initialized as if no data have been stored. The performance data

126

collection procedure will start to collect data as if the system
execution is started at the beginning.

At the end of a simulation, the simulator asks the user to indicate
if the final status of the total simulation system is to be saved (2,
917). If the user responsed yes, then procedure savesysvar (rsfile) (2,
923) 1s called to save the final status of the total simulation system.

Procedure savesysvar(varoutfile:text) (8, 1201) starts out to check

if there is any FSM component in the SAN model. If the last FSM

component, fsml, does not equal fsmQ, then procedure ssfsm(outfile,name)

(8, 1209) is called to save the final status of all the FSM components.

The name of the FSM component is passed to procedure ssfsm(outfile,name)

by the variable, name, starting from the first FSM component, fsml, to
the last FSM component denoted by variable, fsml.

Procedure ssfsm(var outfile:text,name:smname) (8, 744) saves the

final status of a FSM component in the output file, outfile. The name
of the FSM component is passed to the procedure ssfsm by the variable
name. Lines (8, 750-756) show that the execute status (execstatus),
the current state (cs), the next state (unts), the current pulsed inputs
(cx2|i| » the current static inputs (cxs[i]), the current pulsed outputs
(czp[i]), the next pulsed outputs (ntzp[i]), the curreant static outputs
(czs[1]), the next static outputs (ntzs[i]), the next update time (time)
and next update task (task) of the FSM component, name, are saved in the
file, outfile.

After saving the final status of all the FSM components, procedure

savegysvar continues on to save the final status of all the CFP, CFS,

127

DELP, DELS, DER, CLK, QUE and ENV components in the same manner as the
final status of all the FSM components are saved (8, 1210-1225).

Procedure sssvar(outfile) (8, 1228) is called to save system variables

and the event file.

Procedure sssvar(var outfile:stext) (8, 920) saves all the system

varlables and the event file in the file, outfile. Procedure sssvar
starts out to save the event file first. The local variable, tempset,
is set to point to the header of the event file. The variable
indicating the number of event sets is initialized to zero (8, 929). The
while loop (8, 931-935) finds out the number of event sets in the event
file and the event set number is saved in the file, outfile. The for
loop (8, 938-948) saves all the event file information in the file,
outfile. First, the event set time and event count of an event set is
saved (8, 940). Second, the component kind, component name, and the
event type of an event is saved; this step is repeated until all the
event entries of an event set are saved (8, 942-948). The for loop (8,
938-948) is continued until all the event sets are saved. At the end,
the current simulation time (Eggg), the previous simulation time
(tprev), the last executed component kind, component name, and event
type are saved in the file, outfile (8, 951-952).

After saving the event file and the system variables, the next data
collection times of all the performance trace instances are saved by

calling procedure ssstat{outfile) (8, 1231). Procedure ssstate(var

outfilestext) (8, 1177) basically saves the next data collection times

128

for all the regular variable history instances and expression history
instances. That completes the process of saving the final status of the
total simulation system.

In the 1initialization process, the simulator asks the user to
indicate if it is a new initializiation or restart initializ;tion (1,
900-908). 1If it 1s a restart initialization, then procedure

reset(rsfile) is called to reset the restart initialization file,

rsfile, for reading; procedure reload(rsfile) is called to read the

restart initialization file, rsfile, to reconfigure the user defined
system from the state in which the previous run stopped; and procedure

close(rsfile) is called to close the restart initialization file.

Procedure reload(var infile:text) (8, 1238) basically does the

reverse process of procedure savesysvar(varoutfile.text) (8, 1201) to

read the restart initialization file and reconfigure the user defined
system from the state in which the previous run stopped. At the end,
procedure reload also initializes the two SAS defined ENV components,

S$SYSTEM-MONITOR and env0O to terminal ENV with check option equal never.

F. System Executive

System Executive, which is the heart of the State Architecture
Simulator (SAS), carries out the simulated execution of the user's
system. Inside the Systém Executive, performance traces are saved as
appropriate in a performance data file, system status reports are saved

in a gystem data file, and user interaction with the model through the

129

execution of terminal environment components 1s carried out through the
user's terminal. Simulated system execution error reports are also made
to the user via the terminal.

In the following sub-sections, we will first describe the control
flow of the System Executive to give readers a general idea of how the
System Executive performs system execution based on the event file. The
discussion of the control flow of the System Executive will touch
several important ideas such as event file management, scheduling and
execution of start and update events, performance trace collection, and
the time advancement process. The detalls of the above ideas and their
implementations will be explained after the explanation of the control

flow of the System Executive.

1. Control flow of System Executive

Before we describe how the System Executive performs system
execution based on the event fille, we want to describe the general
philosophy of the System Executive. SAS 1s an event driven simulator.

There is a multi~linked list event file to keep track of all the
events to be executede There are two types of events, namely start and
update for each component kind, except the DER component which has only
a start event. Each start.event of a component 1s scheduled (put) into
the event file as a result of an input excitation (arrival of a pulsed
input or change of a static input). The update event of a component is

put (scheduled) into the event file at the end of the execution of the

130

component's start event when the component's execution time is greater
than zero.

There 1s a general exception to the above discussion for the ENV
compounent. Each ENV component has a start expression and a start
expression check option associated with the compounent. Whenever the
start expression of the ENV component evaluates true at the check option

time (everyevent, everytimechange, never), a start eveant of the ENV

component is scheduled into the event file. That is why later on in

the control flow of the System Executive the start expression of each
ENV component is checked both at the end of each event execution and at
the end of the execution of all the events in an event set.

Furthermore, when the start event of an ENV component is executed, it can
initiate a future start event of the ENV component. To avoid the
confusion of having more than one event of the same ENV component in the
event file for the same time, the future start event of the ENV
component is not scheduled into the event file right away. Rather, the

ENV component variables tstart and updatestate.task are set to indicate

a start event of the ENV component needs to be scheduled at the time
indicated by tstart. Later on in the control flow of the System
Executive, each ENV component is checked 1f a start event of the
component needs to be scheduled just before an event is removed to be
executed and after all the events in an event set is executed.

As for the performance trace instances, the information indicating
the next recording time of a performance trace is stored in the

performance trace data structure. Later on in the control flow of the

131

System Executive, the performaunce trace instances are checked if the
performance trace is to be recorded.
The control flow of the System Executive is shown in Figure 3.7 and
is described as follows:
(a) It checks if the current simulation time, tnow, exceeds the
ending of the simulation time, tend; or if the system halt

variable, syshalt, 1s true. If one of them is true, the

simulator will exit from the System Executive, otherwise it

continues at (b).

(b) If there 1s any event in the event file, then it continues at

(c); otherwise it goes to (d).

(c) While there is at least one event waiting to be executed at

tnow, it goes to (c.i); otherwise it goes to (d).

1) It first checks 1if there 1s any ENV start event to be
scheduled at tnow. If that is true, then an ENV start
event is scheduled at tnow.

11) It removes an event—entry from the event file.

iii) Depending on the type of event (start or update) and the
kind of component, the proper procedure will be executed.

iv) After the execution of every event, the System Executive
will check if any ENV start event needs to be scheduled

at tnow. If yes, a start event for that ENV is scheduled.

132

Ay
evant in the
eventfile

Aoy
event walting
at tnow

Check ENV start
expression at
svery tios change

Add ENV
start ewnt noeded
" to be scheduled

|

Remowe an
st entry

Yes

Ay evant
valting at tnow

Quck p-'rtornnneo
trace recording
at every tine cnange

l

Dslete an
event sat
Avance
simulation time
Check ENVs atart
expresgion after
every event being
smcuted
Resat cxall)
loadi ng status l
to false Check performance
trace recording
after avery event

bei ng exacuted
Set all pulsed
outputs to null

Yos

Figure 3.7. Control flow of the System Executive

v)

vi)

133

It also checks if any performance trace needs to be
collected. If yes, the performance trace collection
procedure will be executed.

It checks the system halt variable again. If syshalt
equals true, then the simulator will exit from the System

Executive, otherwise it goes back to (c).

(d) After the execution of all the events in the curreat event-set

and before the current simulation time is increased, it checks

if any ENV component start event needs to be scheduled. If

yes,

a start event of those ENV components will be scheduled

at the current simulation time.

(e) It checks if there is any event waiting to be executed at the

current simulation time, tnow. If yes, then it goes to (a); otherwise it

goes to (e.i).

1)

i)

ii1)

iv)

v)

It checks if there 1s any performance trace to be
collected at every time change. If yes, the performance
trace collection procedures will be executed.

It deletes the event-set, with the current simulation
time, from the event file.

It updates the next simulation time.

It resets the loading status of static inputs of all the
components to false, which implies the static inputs have
not been changed at the current simulation time.

It resets the pulsed outputs of all the components to

null.

134

(£) 1t goes to (a).

When the simulator exits from the System Executive, the simulator
will ask the user if the total status of the simulated system 1s to be
saved. If yes, the total status of the simulated system is saved in the
restart initialization file, rsfile. The simulator also saves the
performance trace in the performance data file, datafile, and the systenm
status data in the system data file, sysfile. This is the end of the

simulation.

2. Procedure internact

Procedure ianternact (9, 1033) implements the countrol flow of the
System Executive. In the following discussion, we will delay the
explanation of the details of some procedures called by procedure
internact. Procedure internact starts out with a while loop (9, 1053-
1250) to check if the simulation rum ends or not (9, 1053). If not,
procedure internact checks if there is any eveunt in the event file (9,
1056). 1If yes, procedure internact proceeds to execute all the events
in the current event set with the event set time equal to the current
simulation time (9, 1063-1119).

If the current eveant set time is smaller than the current

simulation time, then procedure execerr(eanvinstc,i,El) is called (9, 1059).

The parameters euvinstc and 1 passed to procedure execerr are not used in
this case; while the integer El is the error message number. If syshalt
is set true at the end of the execution of procedure execerr, then

procedure execstop is called to halt the system execution (9, 1049).

135

A second while loop (9, 1063-1119) executes all the events in the
current event set. The while loop check if there is any event in the
current event set (9, 1063). If true, it executes the while loop.
Lines (9, 1066-1089) check all the ENV components if any of their start
events need to be scheduled at tnow. If the ENV component's variables

updatestate.task equals add and tstart equals tnow, which implies a

start event of the ENV component needed to be scheduled at tnow, then

the execution state of the ENV component is checked. If the ENV
component is not in Busy state, then the variables for scheduling an event
are set up and procedure schedule (9, 1080) is called to schedule a

start event for the ENV component. If the ENV component is in Busy

state, then procedure execerr(envinstc,i,E29) is called to report an

execution error (9, 1083).

Procedure remevent (9, 1092) is called to remove an event from the
event file; and the removed event is executed by calling procedure
execevent 69, 1094). The details of procedure remevent and execevent
will be expiained in later sections. After executing an event, each ENV
component is examined. If the ENV component is not the last executed
component, and the ENV component's execute state is not idle, aud the
ENV component's check option is everyevent, then procedure

checkexp(everyevent) is called to check the start expression (STARTEXP),

as mentioned in Chapter II, of the ENV component (9, 1097-1106). If the

start expression evaluates true, then procedure checkexp(everyevent)

schedules a start event for the ENV component. Procedure

savehistreg(everyevent), savehistcon(everyevent), and

136

saveexphist(everyevent) are called to check if there is any regular

variable history, conditional variable history, and expression history,
respectively, to be collected; the history traces will be recorded by
those three procedures if they are needed. These complete one cycle of
the while loop (9, 1063-1119) to execute an event from the current event
set.

At the end of the execution of all the events in the current event
set and before updating the current simulation time, lines (9, 1124~
1152) check if any ENV component start event needs to be scheduled. If
yes, a start event of the ENV component is scheduled at tnow.

Lines (9, 1154-1156) check if there is any event waiting to be
executed at the current simulation time (some ENV start events may be
scheduled just before the current simulation time is updated in lines
(9, 1124-1152). 1If yes, procedure internact skips all the lines (9, 1159-
1248) and goes back to beginning of the while loop (9, 1053); else,
lines (9, 1159-1248) are executed. Procedure

savehistreg(everytimechange), savehistcon(everytimechange), and

saveexphist(everytimechange) (9, 1161-1165) are called to record

performance traces at every time change. If the current event set does
not have any event, then the current event set is deleted from the event
file (9, 1170-1171). Lines (9, 1174-1175) set the next event time; if
the event file is empty, then it sets the next event time greater than
the ending of the simulation time to indicate no event needs to be

executed until the end of the simulation time. Line (9, 1178) calls

137

function minitsave to obtain the nearest time that a performance trace
is to be recorded and assigns it to the variable ntsave. Line (9, 1181)

calls function minienvtstart to obtain the nearest time that an ENV

component start event had been indicated to be scheduled, and assigns it to
the variable utstart. The curreunt simulation time, tnow, 1Is saved iu the

variable, tprev (9, 1185). Function mini(ntsave,ntevent,ntstart) is

called to pick up the minimum of those three variables and assigns it to
tnow, the current simulation time (9, 1186). If the current simulation
time, tnow, has been advanced, then the loading status, cxsloadfi], of

~ the static inputs of all the compounents are reset to false; the pulsed
outputs, czp[i], of all the components are set to null (9, 1191-1244).
Procedure internact completes the execution of all the eveats in an
event set and goes back to the beginning of the while loop (9, 1053) to
gtart another event set. The while loop is repeated until the current
simulation time exceeds the ending of the simulation time or the system

halt variable is set to true.

3. Event file management

In the following paragraphs, we will discuss the general
organization of the event file, the steps involved in putting a new
event in the event file (schedule an event) and the steps involved in
removing an event from the event file.

The event file keeps track of all the current and future events
needing to be executed. There are two types of events, start and

update. The details of start and update events will be explained in

138

later sections. All these events, with their attributes which include
the component kind, the component name, the type of event, and the
executlon time of the event, are stored in the event file. The event
file 1s organized in a multi-linked list structure as shown in Figure
3.8. The multi-linked list groups all the events with the same
execution time into one event set. Each event set has a record of
elements which consists of the following:

a) time = the execution time of the event set

b) count — the total number of event entries in the event set

c) nextevent - a pointer to the first event entry of the event

set

d) next - a pointer to the next event set

Each event entry, within an event set, also has a record of
elements which cousists of the following:

a) kind - the kind of the component

b) name - the name of the component

c) action - the type of event (start or update)

d) next = a pointer to the next event entry within the event

set

Event sets are organized in chrounological order. The event set
with the lowest execution time is stored on the top of the list. Within
an event set, the event entries with ENV kind are stored on the top of
the list, and the event entries with other kinds are stored below the
ENV kind. The ENV events are given higher execution priority within an

event set because we want the user acting through the terminal ENVs to

Figure 3.8.

139

time count next nextevent |
N ald
kind l nsme action l next I
el
kind name action next
A
time count next nextevent
kind name | action I next I
|
} kind name action next
! —
|
| "
' |
4
l i
time count next nextsvent
-l ‘
- kind name action next .

Event file structure

140

have first chance to examine the system status. When a new
event is to be scheduled in the event file, the new event will be
inserted into the event file according to the above order.

The exact order in which an event entry is removed from the event
file is as follows:

a) Those event entries in the event set with the lowest execution

time (earliest event time) will be removed first.

b) Within an event set, event entries with ENV kind will be
removed first.

c) Within the set of event entries with ENV kind, or within the
rest of the event entries in an event set, an event entry is
randomly removed.

Here, we show an example on the priority of removing an event from
the event file. Suppose the event file has four event entries to be
executed at simulation time = 5.0 and one event entry to be executed at
simulation time = 6.0 as shown in Figure 3.9a. If one event is to be
removed from the event file, according to the priority established, the
update event with ENV kind is removed first and the resulting event file
is shown in Figure 3.9b. If another event is to be removed at this
point, one of those three events with execution time = 5.0 is to be
picked randomly. The resulting event file may look like one of the
figures as shown in Figure 3.9¢(l), Figure 3.9¢c(2), or Figure 3.9¢(3);

if the event with component name Sendmgr, Medium, or Sendbit,

respectively, is removed.

141

5.0 4
ENV I Senduser Iupdate ,
—
vt
I FSM I Sendmgr Isturt l J
——
—
I DELS I Madium I start I —I
e
)
FSM Sendbit I update I l
1
*
6.0] 1
= FSM Sendelk start
Figure 3.9a. Current event file at time = 5.0
o] |
FSM l Sendmgr l étart I J
_
rl;;s l Medium l gtart I J
7
I
rFSM [Sendbit |update| ‘J
6.0] 1
2
FSM l Sendclk l start l .

Figure 3.9b. One event is removed from event file in Figure 3.9a

142

Medium J start , J
-
Sgndbit l update I ,
AY
-+
FSM | Sendclk start \
%
(L]
5.0(2
FSM Sendmgr I start I
—
s
FSM Sendbit update \
%
= FSM Sendclk start .
(2}
5.0[2 l I
FSM Sendmgr Lstart I l
-
N— -l
DELS Medium start
X
-~
6.0 1
FSM Sendclk start N
) ¥

Figure 3.9c. (1), (2) and (3) show the three possible results after one
event is removed from the event file in Figure 3.9b

143

4. Procedure schedule and remevent

Procedure schedule (11, 750) implements the process of putting a
new event (scheduling an event) into the event file. Just before the
procedure schedule is called, the global variables identifying the
attributes of an event (component kind, component.name, event time,
event type) have to be set, e.g. lines (, 1076-1080), so that
procedure schedule knows the type of event and its attributes needing to
be put into the event file. Procedure schedule starts out to assign the
header of the event file to the local variable, curl (11, 758). If the
event file is not empty (11, 759), then the event set list i1s searched
until the event set time is greater than or equal to the event time of
the new event (indicated by the variable file:time or the end of the
event set list is reached (11, 767~771). If one of the event set times
matches the file_time, then the event set count is increased by one,
which means a new event is to be added into the event set (11, 773),
else a new event set has to be created (11, 777-780) for the new event
and inserted into the event file (11, 781-794). 1In line (11, 759), if
the event file is empty, then a new event set is created and the event
file pointer, eventfilept, is initialized to point to the event set (11,
800~-806).

At this point, the variable, curl, is pointing at the event set in
which the new event is to be inserted. The variable, overlap, is set to
indicate 1f there is overlap of the same event in the same event set.
The while loop (11, 615-821) checks i1f there is any identical event

already in the same event set. If there is an identical event, then the

144

event count of the event set is decreased by one (11, 823), else a
new event entry is created (11, 827-832) and inserted into the event entry
list of the event set (11, 838~869). If the event entry list is empty,
then the new event entry is inserted at the top of the list (11, 837-843);
else, if the first event entry of the event entry list is not an ENV
component, then the new event entry is inserted to the top of the list (11,
845-849); else, the new event entry is inserted after all the ENV event
entries in the event entry list (11, 858-869). At the end, the scheduled
event and its attributes are printed on the user terminal (11, 870-873).
This completes the scheduling process.

Procedure remevent (9, 809) implements the process of removing an
event from the event file. After executing this procedure, the current
removed event and its attributes: component kind, component name, and

event type, are stored in the global variables: csmkind, csmname, and

csmevent, respectively. Procedure remevent starts out to check if the
event file is empty or not. If the event file is empty, then procedure

execerr(name,num,E19) (9, 8l7) is called; else, the proper event is

to be removed from the event file (9, 822-860). Function envno is
called to find the number of ENV event entries in thé current event set
and assigned to the local variable i (9, 822). 1If there 1s at least one
ENV event entry, then the function randint(i) is called to randomly pick
a value between 1 and 1 to indicate which ENV event entry is to be

removed (9, 825); else, function randint(eventfileptA.count) is

called to randomly pick a value between 1 and eventfileptacount to

indicate which event entry is to be removed (9, 826). If the returned

145

integer variable, n, is 1, the first event entry is to be removed; 2
implies the second event entry is to be removed, and so on. If n equals

0, which it should not, then procedure execerr(name,num,E19) is called

to report an error (9, 827); otherwise, procedure remevent goes down the
event entry list sequentially to pick out the nth event (9, 834-841).

The global variables corresponding to the current removed event are
loaded. A description of the removed event is printed on the terminal
(9, 848-852). The event entry is removed from the event set (9, 855-
856), event set pointers are adjusted, and the event count of thg current
event set is decreased by one (9, 859). This completes the process of

removing an event from the event file.

5. Execution of SAN components

SAS is an event driven simulator. There are two types of events,
start and update. Also there are three execution states related to
events: Idle, Pending (Pend), and Busy. In the SAS program, we will use
lower case for the three execution states idle, pend, and busy. In the
following sub—-sectiouns, we will explain the meaning of the execution
states: how each component changes its execution state with respect to
its input excitations, execution of start and update events, start and
update event scheduling, and the detailed steps involved in executing

start and update events.

a. Finite State Machine (FSM): exists in three different

execution states as shown in Figure 3.10. When a FSM component is in the

Idle execution state, it is understood that the component has no defined

146

Input excitation

Figure 3.10. Execution state transition diagram for FSM, CFP and CFS

147

pulsed inputs or outputs; the current staté and the static outputs of
the component are defined. At the arrival of a pulsed input, the
execution state of the component is set to Pending and a start event for
the component 1s scheduled in the event file. The reason for the
Pending state is to allow SAS, a sequential procedure, to emulate the
simultaneous execution of multiple components at the same simulation
time. The Pending state identifies that a pulsed input has arrived at
the FSM compounent and the component is waiting to be executed at the
current simulation time. When executing the start event of a Pending
FSM, the execution state 1s set to Busy. If the component execution
time is greater than zero, then an update event for the component is
scheduled, else the update event of the component is executed
immediately. When executing the update event of a busy component, the
execution state is set to Idle again. This completes the execution
cycle of a FSM component.

The detalled steps in executing a start event of a FSM component
are as follows:

i) The execution state of the component is set to Busy.

1i) The Next State Function (FNS) of the component is

executed.
i1i) The Pulsed Output Function (FOUTP) of the component
is executed.
iv) The Static Output Function (FOUTS) of the component

is executed using the new next state.

vi)

148

The update record, which stores the next state, next
pulsed and static outputs, and the update time, of
the component is loaded.

If the component execution time 1s greater than zero,
then an update event of the component is scheduled,
else the update event of the component 1s executed

immediately.

The detailed steps in executing an update event of a FSM component

are as follows:

1)

i1)

i1i)

iv)

v)

b..

The execution state of the component is set to Idle

The pulsed inputs of the component are reset to null

Update the current state of the component from the update
record

Update the pulsed and static outputs of the component from the
update record

The updated pulsed and static outputs are loaded into their
destination components
Pulsed Combinational Function (CFP): also exists in three

different execution states as shown in Figure 3.10. The changes of the

execution state with respect to its input excitation, and the execution

of its start and update events is similar to that of a FSM.

The detailed steps in executing a start event of a CFP component

are as follows:

1)

i1)

Set the execution state to Busy

Execute the Pulsed Output Function

149

111) Store the update time in the update record.
iv) If the component execution time is greater than zero, then an
update event of the component is scheduled, else the update

event of the component is executed immediately.

The detalled steps in executing an update event of a CFP component
as follows:
1) Set the execution state to Idle.
ii) Reset the pulsed inputs to null.
iii) Update the pulsed outputs and load the updated
pulsed outputs into their destin;tion components.

¢, Static Combinational Function (CFS): also exists in three

different execution states as shown in Figure 3.10. The changes of the
execution state with respect to its input excitation and the execution
of its start and update event are similar to that of a FSM, except that
the input excitation of a CFS component is due to a change of static
inputs while that of a FSM component is due to the arrival of pulses at
the pulsed inputs.

The detalled steps in executling a start and update event of a CFS
component are similar to that of a CFP component, except that the former
executes the Pulsed Output Function of the component and the latter
executes the Static Output Function of the Component.

d. Pulsed Delay (DELP): exists in only two different execution

states as shown in Figure 3.ll. At the arrival of a pulsed input, the

executlion state of the component is set to Pend and a start event of the

150

Input excitation

1dle I (Pend

Execute start event

Figure 3.11. Execution state transition diagram for DELP, DELS, CLK and
DER

151

component is scheduled into the event file. After executing the start
event of the DELP component, the execution state of the component is set
to Idle and an update event of the component 1s scheduled into the event
file.
The detalled steps in executing a start event of a DELP compounent
are as follows:
1) Set the update time, which is equal to the current
simulation time + the delay time
i1) Store the pulse in the update record
iii) Schedule an update event of the component at the update time
v) Set the execution state to Idle
The detailed steps in executing an update event of a DELP component
are as follows:
1) Remove the current pulsed output from the update record
i1) Load the pulsed output into its destination components

e. Static Delay (DELS): exists in two different execution

states as shown in Figure 3.,11. The changes of the execution state
with respect to its input excitation and the execution of its start and
update events are similar to those of a DELP component, except that the
input excitation of a DELP component is due to the arrival of a pulse at
the pulsed input while that of a DELS component is due to a change of
its static input. The detailed steps in executing a start and update
event of a DELS component are also similar to those of a DELP component.

£. Queue (QUE): has more complicated execution state

transitions than the other component kinds as shown in Figure 3.12. The

152

execute an,
update event

for enq

execuge
event

Busy,Pend

an update
for enq

Idle, Idle

execute
avent

Idle,Pend

Pend,Busy

an update
for deq

eXecute

execute an
update event
for deq

Figure 3.12. Execution state transition diagram for QUE

153

execution state of a QUE depends both on the enqueue status (the
execution state of loading new data into the queue) and dequeue status
(the execution state of pulsing out data from the queue). With each
state in Figure 3.12, we associate a status doubleton; the value on the
left represents the enqueue status and that on the right represents the
dequeue status; e.g. when they are both in Idle state, the execution
state of queue 1s represented by the state (Idle,Idle). The transitions
of the execution state of a QUE are as follows:

i) At state (Idle,Idle), if a pulsed datum arrives, then it will
get into state (Pend, Idle) and schedule a start event for the
enqueueing process; if a deq control input arrives, then it
will get into state (Idle, Pend) and schedule a start for the
dequeueing process. At the arrival of either a pulsed datum
(enqueue) or a deq control input (dequeue), a start event is
scheduled only if both the enqueue state and dequeue state are
Idle. The queue may be busy reacting to ouly one pulsed input
at a time. If either a pulsed datum or a deq control input
arrives while the queue is busy reacting to the other pulse,
then the queue will not become busy with the later pulse until
the reaction to the first pulse i1s done. If both a pulsed
datum and a deq control input arrive at the same time, then one
of the pulses is randomly picked to be executed first, while

the other will have to wait until the end of the reaction to

the first pulse.

ii)

iil)

iv)

v)

vi)

154

At state (Pend, Idle), if a start event for the enqueueing
process is executed, then it will get into state (Busy, Idle);
1f the enqueue execution time is zero, then the update event of
the enqueueing process is executed immediately, else an update
event of the enqueueing process is scheduled. If a deq control
input arrives, then it will get into state (Pend, Pend).

At state (Idle, Pend), if a start event for the dequeueing
process is executed, then it will get into state (Idle, Busy);
if the dequeue execution time 1s zero, then the update event of
the dequeuelng process is executed immediately, else an update
event of the enqueueilng process is scheduled. If a pulsed
datum arrives, then it will get into state (Peund, Pend).

At state (Busy, Idle), if an update event for the enqueueing
process 1s executed, then it will get into state (Idle, Idle);
if a deq control input arrives, then it will get into state
(Busy, Pend). '

At state (Idle, Busy), if an update event for the dequeueing
process is executed, then it will get into state (Idle, Idle);
if a pulsed datum arrives, then it will get into state (Pend,
Busy).

At state (Pend, Pend), if a start event for the enqueueing
process is executed, then it will get into state (Busy, Pend);
1f the enquéue execution time is zero, then the update event of
the enqueueing process is executed immediately, else an update

event of the enqueueing process is scheduled.

vii)

viii)

155

If a start event for the dequeueing process is executed,
then it will get into state (Pend, Busy); if the dequeue
execution time is zero, then the update event of the dequeueing
process is executed immediately, else an update event of the
dequeuveing process is scheduled.

At state (Busy, Peund), if an update event for the enqueueing
process is executed, then it will get into state (Idle, Pend)
and schedule a start event for the dequeueing process.

At state (Pend, Busy), if an update event for the dequeueing
process is executed, then it will get into state (Pend, Idle)

and schedule a start event for the enqueueing process.

The detalled steps in executing a start event of a QUE component are

as follows:

1)

i1)

If the execution state is (Idle, Pend), then the start event of
the dequeue process 1s executed; if the execution state is
(Pend, Idle), then the start event of the enqueue process is
executed; else, if the execution state is (Pend, Pend),

then it randomly picks either the start event of the dequeue
process or of the enqueue process to be executed.

If the start event of the enqueueing process is executed, then
it sets the enqueue status to Busy and sets the enqueue

process update time; if the queue is open, then it sets the
next update state to closedempty and the next pulsed

output to the current pulsed data; if the queue is closed, then

it sets the next update state to closednotempty, the next

i11)

iv)

156

pulsed output to null, and the next update task to add (which
indicates a pulsed datum will be added ianto the queue at the
update time).

If the start event of the dequeueing process is executed, then
it sets the dequeue status to Busy and sets the dequeue

process update time; if the queue is open or closedempty, then

it sets the next update state to open and the next pulsed

output to null; if the queue is closednotempty, then it sets

the next update task to delete (which indicates that the
oldest stored datum is to be dequeued and pulsed out); if the
number of data entries in the queue is 1, then the next update
state is set to closedempty, else the next update state is set

to closednotempty.

If the next update time equals the current simulation time,
then the update event of the QUE component is executed, else an

update event of the QUE component is scheduled.

The detailed steps in executing an update event of a QUE component

are as follows:

i)
ii)

111)

Set the current state and static output of the queue.

Load the static output into its destination component.

If it 1s an enqueue process update, then the current pulsed
output is set according to the update record; if the next
update task is add, then the pulsed data input is imserted into
the queue; the pulsed input is set to null; the enqueue status

is set to Idle; 1f the dequeue status is in Pend state, then a

157

start event of the que;e is scheduled into the event file.

iv) If it is a dequeue process update, then a pulsed data is
deleted from the queue and assigned to the current pulsed
output; the current dequeue coutrol input is set to null; the
dequeue status is set to Idle; if the enqueue status is in
Pend state, then a start event of the queue is scheduled into
the event file.

v) Loads the pulsed output into its destination components.

8. Derivative (DER): exists in two different execution states

as shown in Figure 3.11. At the change of the DER component's static
input, the execution state of the component is set to Pend and a start
event of the component is scheduled into the event file. After
executing the start event of the DER component, the execution state of
the component is set to Idle. The DER component reacts to the change of
its static input instantaneously, which means when a rising or falling
edge in the static input is detected, a r or f pulse is pulsed out at
the same simulation time. Since the DER component always has zero
execution time, the update event for the DER component will not be
needed.

The detailed steps in executing a start event of a DER compomnent are
as follows:

1) If a rising edge is detected, then the pulsed output is set to

r, else, if a falling edge is detected, then the pulsed output

is set to £.

11) The pulsed output is loaded into its destimation components.

iii)

iv)
he

158

The current state 1s set equal to the current static input.

The execution state is set to Idle.

Clock (CLK): exists in two different execution states as

shown in Figure 3.11. At the arrival of a start pulse at the CLK

component pulsed input, the execution state of the component is set to

Pend and a start event for the component is scheduled into the event

file.

After executing the start event of the CLK component, the

execution state of the component is set to Idle and an update event of

the component 1is scheduled into the event file.

The detailed steps in executing a start event of a CLK component

are as follows:

i)

i1)

If the pulsed input is a start pulse and if the clock is in
the running state, then the scheduled update event of the clock
is deleted from the event file; the clock is set to running
state; the time for the timeout is set; and the update state

record is set with nts and ntzs[l] equal 'expired', ntzp[i]

equals 'timeout', and the update time equals the timeout time.
If the pulsed input is a reset pulse and if the clock is in

the running state, then the scheduled update event of the clock
is deleted from the event file; the clock is setvfo the reset

state; and the update state record is set with nts and ntzs[l]

equal 'reset', ntzp[l] equals null, and the update time equals

© tnow.

159

iii) If the update time equals tuow, then the update event of the
clock is executed, else an update event of the clock is
scheduled into the event file.

The detailed steps ln executing an update event of a CLK component

are as follows:

i) If the ntzp[l] equals 'timeout', then the czp[l] is set to
'timeout' and the current pulsed output is loaded into its
destination components.

il) If the ntzs[l] does not equal czs.1|, then czs[l] is set to
equal to ntzs[l] and the current static output is loaded into

its destination components.

i. Environment (ENV): exists in three different execution

states as shown in Figure 3.13. At Idle state, if a pulsed input
arrives, or thé ENV start expression evaluates to true, or a start event
is scheduled at the current simulation time (in executing an ENV start
event, the user may file another start event of the component to be
scheduled at a future time), then the execution state of the component
is set to Pend and a start event of the ENV component is scheduled into
the event file. At Pend state, after executing a start event of the ENV
component, the execution state of the component is set to Busy; if the
component execution time 1s greater than zero, then an update event of
the component is scheduled, else the update event of the component is
executed immediately. After executing the update event of the
component, the execution state of the component is set to Idle state

again.

160

Input excitation

Figure 3.13. Execution state transition program for the ENV component

161

The detailed steps 1in executing a start event of an ENV component
are as follows:
1) The execution state of the component is set to Busy.

11) If the ENV function is terminal, then the terminal function
procedure is called, else, 1f the ENV function is procedure, then
the ENV procedure, envfunction, is called.

iii) Set the update time.

iv) If the update time equals tnow, then the update event of the
component is executed immediately, else an update of the
component is scheduled into the event file.

The detailed steps in executing an update event of an ENV component

are as follows:
i) Set the execution state to Idle.
ii) Clear all the pulsed inputs to null.
i1i) Update the pulsed and static outputs of the component from the
update record.
iv) The updated pulsed and static outputs are loaded into their

destination components.

6. Implementation of the start and the update event of each component kind

This section discusses procedures fsmst, fsmupdate, cfpst,

cfpupdate, cfsst, cfsupdate, delpst, delpupdate, delsst, delsupdate,

quest, queupdate, clkst, clkupdate, envst, envupdate, and derst, which

implement the start and the update event of the FSM, CFP, CFS, DELP, DELS,

162

QUE, CLK, ENV components and the start event of the DER component,

respectively.

a. Procedure fsmst(name:smname) (10, 1153): implements the

start event of the FSM components. The variable name indicates the
particular component for which the start event 1s to be executed.
Procedure fsmst first checks 1f the execution state is pend or not (10,
1160). If it is, then the start event is executed (10, 1162-1197), else

procedure execerr{name,num,E2) (10, 1202) is called to report an

execution error by passing the name of the current executing component,
name, and the error message, E2, and a dummy integer, num,

In executing the start event, procedure fsmst first sets the
executloa state to busy (10, 1162). It thean starts to execute the FNS,
FOUTP, and FOUTS functions of the component (10, 1164-1172). 1If the FNS
type is list, then procedure fsmfns(name) is called to match the current
state and input array with the FNS l1list to produce the next state value;
else, if the FNS type 1s a procedure, then procedure

fsmfunction(fsm[name].fnsproc) is called to execute the FNS procedure,

which is indexed by the procedure number, fsm[name]fnsproc; else,

procedure execerr(name,num,E28) is called (10, 1165-1169)., If the

system halt variable, syshalt, is set true then procedure execstop is
called to stop the simulation execution. FOUTP and FOUTS functions (10,
1172-1182) are implemented similarly to the FNS function. At the end,
the next update time is set (10, 1185). If the next update time equals
tnow, then the FSM update event 1s executed, else an update event of the

FSM component is scheduled into the event file.

163

Inside procedure fsmst, procedures fsmfns(name), fsmfoutp(name), and

fsmfouts(name) are called to execute the list type specification of the

FNS, FOUTP, and FOUTS functions. As for the procedure type specification

of the FNS, FOUTP, and FOUTS functions, procedure fsmfunction(num) is

called by passing the appropriate procedure number, num, to execute

their functions. Procedure fsmfunction(num:integer) (20, 755) contains

all the FNS, FOUTP, and FOUTS procedures defined in the FSM components.

The variable, num, passed to procedure fsmfunction(num) is used as a

case Index to branch to the section of code to execute the appropriate

function.

Procedure fsmfns(name:smname) (10, 933) implements the execution of

the list type specification of the FNS fumnction. Procedure fsmfns
starts out to set temp pointing to the first entry of the FNS list (10,
941). Procedure fsmfns then searches the FNS list until the current
state and input values match with one of the entries in the FNS list or
the end of the FNS list is reached. The while loop (10, 948-980)
performs the searching. Each loop matches one entry of the FNS list to
the current state and input values. Line (10, 950) checks if the
current state value equals the state value in the FNS list entry or if
the state value in the FNS list entry is don't care. If so, the
procedure fsmfns continues on to match the pulsed and static inputs;
otherwise procedure fsmfns advances to the next FNS list entry (10,
979). Lines (10, 953-962) check if the current pulsed inputs match the
pulsed input value in the FNS list entry. If they match, then the local

variable xpok is set to true. If xpok is true, then procedure fsmfns

164

continues on to check if the current static input values match the

static input values in the FNS list entry. If they match, then the local
variable xsok is set to true. If the current state pulsed and static
input values equal those of an FNS list entry, then the local variable
match 1s set to true. If match is not true, then procedure fsmfns
advances to the next FNS list entry. The while loop (10, 948-980) is
repeated until match is true or the end of the FNS list is reached.

If the current state and input value match one of the FNS list
entries, then the next update state, nts i1s loaded (10, 985-1000). The
character string denoting the next update state value may be a string
constant or variable. If the character string is a string constant, then

nts is set to equal the character string, temp .nexts.sval (10, 988).

If the character string i1s a string variable, which may be a local cs,

cxp[i], cxs[1], czp[i] or czs[i] variable, then the appropriate value is

assigned to the next update state, nts (10, 991-998).

Procedure fsmfoutp(name:smname) (10, 1012) and procedure

fsmfouts (name:smname) (10, 1098) implement the execution of the list

type specifications of the FOUTP and FOUTS functions. The

implementation details of procedures fsmfoutp and fsmfouts are similar

to that of procedure fsmfns. Readers can refer to the discussion of

procedure fsmfns to understand the procedures fsmfoutp and fsmfouts.

b. Procedure fsmupdate(name:smname) (10, 1216): implements the

update event of the FSM components. The variable name passed to the
procedure fsmupdate indicates the particular component for which the

update event 1s to be executed. Procedure fsmupdate starts out to check

165

1f the execution state is in Busy state or not (10, 1226). If not, then

procedure execerr(name,num,E4) is called to report an execution error.

Procedure fsmupdate continues by checking if the update time equals

tnow (10, 1229). If not, then procedure execerr(name,num,E3) (10, 1274)

is called. Procedure fsmupdate then starts to update the FSM component.
The execution state is first set to Idle. All the pulsed inputs are set

to null. Function ckvalidset(S,updatestate.nts) is called to check if

the next update state value is an element of the state set. If the next
update state value 1s an element of the state set, then the next update
value is assigned to the current state variable, cs, otherwise procedure

execerr(name,num,E25) is called. Lines (10, 1244-1255) update all the

pulsed outputs. For each of the next update pulsed outputs, if the
output is not null, then it is checked if it is an element of the pulsed

output set by calling procedure ckvalidset(ZP[1],updatestate,ntzp[i}).

If it is not, then procedure execerr(name,num,E26) is called, else

the current pulsed output is updated and procedure

schdestxp(fsmsym,name,i) is called to load the pulse into its

destination components. If the next update pulsed output is null, then
the current pulsed output i1s set to null.

Lines (10, 1260-1268) update all the static outputs. If each of
the next update static outputs does not equal its current static output,
then the next update static output is checked if it is an element of the
static output set by calling procedure

ckvalidset(ZS[i],updatestate.ntzs[i]). If it is not, then procedure

execerr(name,num,E27) is called, else the current static output is

166

updated and procedure schdestxs(fsmsym,name,i) is called to load the

static output into its destination components. If the next update static
output equals the current static output, then nothing is donme. At the end,
all the next update pulsed outputs are set to null (10, 1271).

Inside procedure fsmupdate, procedures schdestxp(fsmsym,name,i)

and schdestxs(fsmsym,name,i) are called to load the pulsed and static

outputs into their destination compounents. Procedure

schdestxp(kind:smtype;nametsmname;num:integer) (11, 1354) sorts out the

kind of component needing to be processed. It them calls the
appropriate procedure to load the component's pulsed output into its.
destination components (11, 1359-~1368). In this case a FSM component's

pulsed output needs to be processed. The procedure fsmdestxp(name,num)

(11, 1360) is called to load each component's pulsed output into its

destination components.

Procedure fsmdestxp(name:smnamej;num:integer) (11, 1031) finds out

the destination of the pulsed output, fsm[name].czp[num]. It then calls

procedure loadxp to load the pulsed output into its destination.
Procedure fsmdestxp starts out by initializing the fanout number, i, to
1 (11, 1040). The while loop (11, 1041-1068) first picks out the
destination component kind (dkind), component name (dname), the pulsed
input number (dindex), and the value to be loaded into the destination
component pulsed input (dvalue). If the pulsed output is not connected
anywhere, then procedure fsmdestxp does nothing, else procedure

loadxp(dkind,dname,dindex,dvalue) (11, 1051) is called to load the

pulsed output into its destination components. Procedure fsmdestxp sets

167

up the variables for a start event for each of the destination
components to be scheduled. If the component kind is not a QUE, then
procedure schedule is called to schedule a start event into the event
file; else, for a QUE, if both the enqueue state and the dequeue state
of the queue are idle, then a start event is scheduled, else it does
nothing. (A start event of a QUE is scheduled only if both the enqueue
status and dequeue status are idle as discussed in Chapter III.F.5.f.)
At the end, the fanout number is increased by one. The loop (11, 1041-
1068) is repeated until all the destinations are treate& or the famnout
number exceeds the maximum fanout number.

Procedure loadxp(kind:smtype;name:smnamejnum:integer;

xpvalue:string) (11, 884) loads a value into the destination pulsed

input. Procedure loadxp starts out by assigning temp pointing to the
string set of the pulsed input set according to the kind of component to
be loaded (11, 893-901). The while loop (11, 909-914) checks if the
value to be loaded is an element of the pulsed input set. If so, the

local variable valid is set to true, else valid is set to false. If

valid, then procedure execerr(name,num,E4) is called to report an
execution error with name indicating the component name, num indicating
the pulsed iunput, and E4 indicating the error message. If valid is true,
then, depending on the kind of component procedure, loadxp branches off
to the appropriate lines. As an example, if the component kind is a FSM
then lines (11, 921-937) are executed. If the execution state of the
component is idle, then the pulsed input is loaded and the execution

state is set to pend; else if the execution state is pend, multiple

168

pulses option is enabled, and the curreant pulsed input is null, then the
pulsed input is loaded, 1f the pulsed input is not null, then procedure

execerr(name,num,E18) is called (11, 931-933). 1If the execution state

is pend and multiple pulses option is not enabled, then procedure

execerr(name,num,E1l5) is callede The details of loading the pulsed

inputs of different components are similar. This completes the loading
process of a pulsed output into a pulsed input.
To load a pulsed output from a FSM component into its destination

pulsed input, first procedure schdestxp(kind:smtype;name:smname;num:

lnteger) (11, 1354) is called. Procedure schdestxp will call procedure

fsmdestxp(name:smnamejnum:integer) (11, 1031) to find out the

destination component. Procedure fsmdestxp will call procedure

loadxp(kind:smtype;name:smnamejnum:integer;xpvalue:string) (11, 884) to

load each pulsed output value into the pulsed input. In the same
manner, to load each static output from a FSM component into its

destination static inputs, first procedure schdestxs(kind:smtype;name:

smnamejnum:integer) (11, 1780) is called, which in turn calls procedure

fsmdestxs(name:smname;num:integer) (L1, 1504) to find a destination

static input. Procedure fsmdestxs then calls procedure loadxs(kind:

smtypejname:smnamejnum:integer;xpvalue:string) (11, 138l) to load the

static output value into the static input. The implementation details

of procedures schdestxs, fsmdestxs, and loadxs are similar to those of

procedures schdestxp, fsmdestxp, and loadxp. Readers can refer to the

discussion of procedure schdestxp, fsmdestxp, and loadxp to understand

the implementation of procedure schdestxs, fsmdestxs, and loadxs.

169

c. Procedures cfpst(name:smname) (10, 1368) and cfpupdate(name:

smname) (10, 1416): implement the start and update events of the CFP

component. The implementation details of procedures cfpst and cfpupdate

are similar to those of procedures fsmst and fsmupdate, except that the

former only has to execute the pulsed output function and load the
pulsed outputs into their destinations, while the latter has to execute
the next state function, pulsed output function, and static output
function and load both the pulsed and static outputs into their
destinations. Readers can refer to the explanation of procedures fsmst
and fsmupdate to understand the implementation of procedures cfpst and

cfpupdate.

d. Procedures cfsst(namc:smname) (10, 1537) and cfsupdate(name:

smname) (10, 1585): implement the start and update events of the CFS

component. The implementation details of procedures cfsst and cfsupdate

are also similar to those of procedures fsmst and fsmupdate, except that

procedures cfsst and cfsupdate only have to execute the static output

function and load the static outputs into their destinations. Readers

can refer to the explanation of procedure fsmst and fsmupdate to

understand the implementation or procedures cfsst and cfsupdate.

€. Procedure delpst(name:smname) (10, 1627): implements the

start event of the DELP component. Procedure delpst starts out by
checking if the execution state is pend. If it is false, then procedure

execerr(name,num,E2) is called; else the next update time is set

(10, 1640), a new record is created to save the next update pulse (10,

1643-1647), the new record is inserted into the DELP compomnent update

170

record by calling procedure insdelp(name,temp) (10, 1650), an update

event of the DELP component is scheduled into the event file (10, 1653~
1656), and the execution state is set to idle (10, 1659). This
completes the start event of a DELP component.

£. Procedure delpupdate(name:smname) (10, 1668): implements

the update event of the DELP component. Procedure delpupdate starts out
by checking 1f the list for the update pulse record is empty or not. If

it is empty, then procedure execerr(name,num,E5) (10, 1696) is called,

else, the first update time is checked. If the update time is not

equal to tnow, then procedure execerr(name,num,E3) (10, 1693) is called,

else the update pulse is checked if it is an element of the pulsed

output set. If it is unot, then the procedure execerr(name,num,E26)

(10, 1684) is called; else the current pulsed output is loaded,

procedure schdestxp(delpsym,name,i) is called to load the pulsed output

into its destinations, and the update pulse record is removed from the
list of the update pulse record. This completes the update event of a
DELP component.

g+ Procedures delsst(name:smname) (10, 1702) and delsupdate

(name:smname) (10, 1742): implement start and update events of

the DELS component. The implementation details of procedures delsst and

delsupdate are similar to those of procedures delpst and delpupdate
except that the former delay the pulsed input values to appear at the
pulsed output, while the latter delay the static input tramsitions to

appear at the static output. Readers can refer to the explanation of

171

procedures delpst and delpupdate to understand the implementation of

procedures delsst and delsupdate.

h. Procedure quest(name:smname) (10, 1937): implements the

start event of the QUE component. If the enqueue status is idle and the
dequeue status is pend, then procedure degst (10, 2016) is called to
execute the start event of the dequeue process; else, if the enqueue
status 1s pend and the dequeue status is idle, then procedure enqst (10,
2018) is called to execute the start event of the enqueue process; else,
if both the enqueue and dequeue status are pend, then procedure quest
will randomly pick either procedure enqst or procedure deqst (10, 2022-

2024); else procedure execerr(name,num,E6) is called (10, 2027). At the

end, the update time is set; if the update time equals tnow, then

procedure queupdate(name) is executed, else an update event of the QUE

component 1is scheduled into the event file.

Procedure enqst (10, 1940) implements the start event of the
enqueuelng process. The enqueue status is first set to busy. The
enqueue process update time is set (10, 1948). If the queue is open,
then the next update state and static output is set to closedempty and

the next pulsed output is set to the current pulsed data; else the

next update state and static output are set to closednotempty, the next
pulsed output is set to null, and the update task is set to add (which
indicates a pulsed data will be added into the queue at the update time)
(10, 1960-1963).

Procedure degst (10, 1971) implements the start event of the

dequeue process. The dequeue status is first set to busy. The dequeue

172

process update time is set (10, 1979). If the queue is open or
closedempty, then the next update state and static output are set to
open and the next pulsed output is set to null; else, if the queue

has only one data element, then the next update state and static output

are set to closedempty, else they are set to closednotempty; also, the
next update task is set to delete (which indicates that the oldest
stored data 1s to be dequeued at the next update time) (10, 1992-2003).

i. Procedure queupdate(name:smname) (10, 2051): implements the

update event of the QUE component. Procedure queupdate starts out by
checking if the update time equals tnow. If not, then procedure

execerr(name,num,i) (10, 2141) is called, else procedure queupdate

proceeds to update the queue. The current state and static output of

the queue is updated (10, 2065-2071). If the enqueue status is busy and

the dequeue status is not busy, then the enqueue process is updated (10,

2077-2094); else,.if the dequeue status is busy and the enqueue status is
not busgy, then the dequeue process is updated (10, 2100-2120); else

procedure execerr(name,num,E7) is called. At the end, if a pulse is

generated at the pulsed output, then procedure ckvalidset(ZP[1l],czp[l])

is called to check if the pulse is an element of the pulsed output set.

If it is not, then procedure execerr(name,num,E26) is called, else

procedure schdestxp(quesym,name,l) is called to load the pulsed output

value into its destination components (10, 2131-2134). The next update

pulsed output is cleared to null (10, 2137). This completes the update

process.

173

Je Procedure derst(name:smname) (10, 1785): implements the

start event of the DER component. If the execution state is not pend,

then procedure execerr(name,num,E2) is called, else, if the static
input changes from low (1) to high (h) or from O to 1, then the current

pulsed output is set to rising (r) and procedure

schdestxp(dersym,name,l) is called to load the pulsed output into its

destination; else, if the static input changes from high (h) to low (1)
or from 1 to 0, then the current pulsed output is set to falling (f) and

procedure schdestxp(dersym,name,l) is called to load the pulsed output

into its destination (10, 1797-1809). The current state is set to the
current static input and the execution state is set to idle (10, 182-
1815). This completes the execution of a DER component.

k. Procedure clkst(name:smname) (10, 1829): implements the

start event of the CLK compounent. Procedure clkst starts by checking

the execution state of the CLK component. If the execution state is not

pend, then procedure execerr(name,num,E2) is called (10, 1891);
else procedure clkst checks the type of pulsed input. If it is a
start pulse, then, 1f the clock is running, procedure

delevent(clksym,name,update) is called to delete the update event of the

clock, which was scheduled by the arrival of a previous start input; the
current state and static output of the clock are set to running; the
update time for the timeout pulse is set; and the next update state

and static output are set to expired (10, 1843-1857); else, if the
pulsed input is reset, then the next update state and static output are

set to reset; the next update pulsed output is set to null; if the

174

current state is running, then procedure delevent(clksym,name,update) is

called to delete the update event scheduled in the event file; the
current state of the clock is set to reset; and the update time is set
to tnow.

At the end, the execution state is set to idle and, if the update
time equals tnow, then the update event of the clock is executed, else an
update event of the clock is scheduled into the event file (10, 1877~
1887). This completes the execution of the start event of a CLK

component.

1. Procedure clkupdate(name:smname) (10, 1898): implements the
update event of the CLK component. If the update time does not equal

tnow, then procedure execerr(name,num,E3) is called (10, 1930);

else, if the next pulsed output equals timeout, then the current

pulsed output is set to timeout and procedure schdestxp(clksym,name,l)

is called to load the pulsed output into its destinations; if the next
static output does not equal the current static output, then the current
static output is assigned with the next static output value and

procedure schdestxs(clksym,name,l) is called to load the static output

into its destination. The current state is updated and the next pulsed
output is set to null. This completes the execution of the update event
of a CLK component.

m. Procedure envst(name:smname) (10, 2155): implements the

start event of the ENV component. Procedure envst starts out to check

the execution state. If the execution state is not pend, then procedure

execerr(name,num,E2) is called; else the execution state is set to

175

busy; the update time is set; if the ENV function is terminal, then

procedure termfunction(name) is called to allow the user to examine and

asslign system variables via the terminal; else, 1f the ENV function is

procedure, then procedure envfunction(procno) is called to execute the

user defined ENV procedure; else procedure execerr(name,num,E28) is

called (10, 2172-2175); the update time is set again in case the
component execution time, texec, is changed during the execution of the
ENV function; if the update time equals tnow, then the update event of
the ENV component is executed, else an update event of the ENV component
is scheduled iuto the event file. At the end, if a future start event
of the ENV component is to be scheduled and the time for the start event

is smaller than the next update time, then procedure execer(name,num,E29)

is calleds This completes the execution of the start event of an ENV

component .

n. Procedure envupdate(name:smname) (10, 2214): implements the

update event of the ENV component. Procedure envupdate starts out to
check the execution state. If the execution state is not busy, then

procedure execerr(name,num,E4) is called (10, 2277); else, if the update

time does not equal tnow, then procedure execerr(name,num,E3) (10, 2274)

is called, else procedure envupdate starts to update the ENV component
(10, 2228-2270). The execution state is set to idle, all the current

pulsed inputs are set to null, the current pulsed outputs are updated

and loaded into their destinations, and the current static outputs are
updated and loaded into their destinations. This completes the

execution of the update event of the ENV component.

176

7. Execution of a terminal and procedure ENV

When a terminal ENV is executing, SAS will prompt the user with a
'#' sign on the terminal. The user can use the on-line Terminal Mode
Command Language, as described in Figure 3.14, to interactively query
the status of the global system, change the check option of the ENV
start expression, assign pulsed and static outputs of the currently
executing ENV, store the status of a named component or all the system
components, schedule a future start event and an update event of the
currently executing ENV, and stop the simulation system execution.

Procedure termfunction(name:smname) (12, 867) implements the

execution of a terminal ENV. Procedure termfunction starts out by
printing the ENV name and the current simulation time on the terminal
(12, 1222~1224). The input line variable, line[ii], is set to contain
only blank characters. A ‘'#' sign is printed on the terminal to
indicate the system is in terminal mode (12, 1235). A line is read from
the terminal and saved in the input line variable, line[ii] (12, 1238~
1243). If the number of characters for each command line exceeds 132
characters, then the terminal mode error code, err, is set to 1 (12,
1250); else the first non~blank character is picked out to match

with the terminal mode command code. If the non-blank character, cc, is
'P' or 'p', then procedure pout(name) is called to print out the
component status; else, if cc equals 'S' or 's', then procedure sout(name)
is called to save the component status in the file, sysfile; else, if cc
equals 'A' or 'a', then procedure aout(name) is called to assign new

values for the'currently executing ENV parameters; else, if cc equals 'F'

fen

17,]

>

15>

i

I+

I

(L=

1

11

[}=+]

Figure

eventfile

name

STARTCHECK := option

+T

+T

177

Description

Print the status of the named component
Print the status of all the system components
Print the contents of the event file

Save the current status of the named component
in the system data file

Save the current status of all the system
components in the system data file

Assign the value zp to the indexed pulsed
output of the currently executing environment

Assign the value zs to the indexed static
output of the currently executing environment

Assign the value option (never,
everytimechange or everyevent) to the
currently executing environment

Schedule a future start event for the
currently executing environment at time T, T
must be greater than or equal to tnow

Schedule a future start event for the
currently executing environment at time tnow
+ T, T must be greater than or equal to zero

Schedule an update event for the currently
executing environment at time T, T must be
greater than or equal to tnow, this command
makes the currently executing environment
busy until T

Schedule an update event for the currently
executing environment at time tnow + T, T
must be greater than or equal to zero, this
command makes the environment busy until tnow
+ T

Exit from the terminal mode and continue
system execution

Stop the system execution, exit from SAS

3.14. Terminal Mode Command Language

178

or 'f', then procedure fevent(name) is called to indicate a future start
event of the currently executing ENV needs to be scheduleld; else, if cc

equals 'U' or 'u', then procedure fupdate(name) is called to set the

next update time of the currently executing ENV; else, if cc equals 'H' or
'h', then the system halt variable is set true to indicate the end of the
system execution and the local variable exit is also set true to
indicate the end of the terminal mode execution; else, if cc equals 'E'
or 'e', then the local variable exit is. set true; else, if cc equals ' ',
then the local variable exit is set félgg to indicate a blank line and
try again; else the terminal mode error variable, err, is set to 2 to
indicate an unrecognized command (12, 1262-1275). I1f the error
variable, err, is greater than zero, then procedure perr is called to
print out the terminal mode command language error message (12, 1278).
The process is repeated until the local variable exit is set true (12,
1280). This completes the execution of a terminal ENV.

The implementation details of the procedures whiéh process the
different terminal mode commands are not discussed in the dissertation but

users can refer to these listings: procedure pout(name:smname) (12,

1141), sout(name:smname) (12, 1171), aout(name:smname) (12, 997),

fevent(name:smname) (12, 1078), fupdate(name:smname) (L2, 1112), and

perr (12, 1199).
When a procedure ENV is to be executed, SAS calls the procedure

envfunction(num:integer) (20, 824). Procedure envfunction, which is

generated by the Transformation process, consists of all the user

179

defined ENV procedures. The proper ENV procedure is referenced by

passing an integer, num, to the procedure envfunction(num:integer).

Within an ENV procedure, a set of SAS procedures can be called to
emulate the Terminal Mode Command Language.

Procedure pname(name:smname) (12, 749) emulates the P name terminal

command. Procedure pname calls procedure psm(output,name) to print out

the status of the named component at the user terminal.
Procedure pall (12, 757) emulates the P all terminal command.

Procedure pall calls procedure savesys(output) to print out the status

of all the system components at the terminal. Procedure

peventfile(outfile) (12, 837) emulates the P eventfile terminal command.

Procedure sname(name:smname) (12, 764) emulates the S name terminal

command. Procedure sname calls procedure psm(sysfile,name) to write the

status of the named component in the sysfile file, the system status data

file.

Procedure sall (12, 770) emulates the S all terminal command.

Procedure sall calls procedure savesys(sysfile) to write the status of

all the system components in the sysfile file.

Procedure azp(num:integer;zpvalue:string) (12, 775) emulates the

AZP.n:=zp terminal command. Procedure azp sets the next pulsed output

variable, ntzp[num], to equal zpvalue. Procedure azs(num;integer;

zgvaluesstring) (12, 784) emulates the AZS.n:=zs terminal command.

Procedure azs sets the next static output variable, ntzs[num], to equal

zsvalue. Procedure astartcheck(check:option) (12, 790) emulates the

180

ASTARTCHECK:=option terminal command. Procedure astartcheck sets the

check option variable, checkopt, to check.

Procedure fabs(time:real) (12, 796) emulates the F T terminal

command. Procedure feventabs starts out to check if the next start
event scheduling time is smaller than tnow. If so, then procedure

execerr(csmname,num,E33) is called, else two global variables are set to

indicate a start event of the component is to be scheduled at tstart

(12, 803). Procedure finc(time:real) (12, 808) emulates the F 4T

terminal command. Procedure finc sets the two global variables to
indicate a start event of the compounent 1s to be scheduled at tstart.

Procedure uabs(time:real) (12, 820) emulates the U T terminal

command and procedure uinc(time:real) (12, 829) emulates the U +T

terminal command.

8. Performance traces

SAS offers several trace functions in addition to those already
described for the Terminal Mode Command Language. In particular, the
user may specify that SAS sample and save the values of any specified
set of SAN system variables or the value of a boolean function of the
SAN system variables. The trace functions are invoked by augmenting the
initial SAN system model with one or more instances of the three kinds
of trace specifications: regular variable history, conditional variable
history, and regular expression history. Their specification formats are

shown in Figure 3.15.

181

VARHISTORY name : regular
VARIABLES : varname, varname,... ;
DTHISTORY : Thist ;

CHECKOPT : never (or everytimechange or everyevent);

END;

VARHISTORY name : conditional
VARIABLES : varname, varname,... ;
CONDITION : boolean expression;

CHECKOPT : never (or everytimechange or everyevent);

END;

EXPHISTORY name : regular;
EXPRESSION : boolean expression;
DTHISTORY : Thist ;

CHECKOPT : never (or everytimechange or everyevent);

END;

Figure 3.15. Trace utilities specification formats

182

To specify a regular variable history instance, the VARHISTORY
instance type is first declared and the unique instance name given. The
word regular following the instance name indicates a regular variable
history instance. Next a set of SAN global variable names are specified to
indicate that SAS should sample and save the values of these variables.

The time interval at which the regular variable history trace is
sampled is given in DHISTORY. The check option of the regular variable
history trace is specified in the line CHECKOPT. A trace may be

disabled by setting CHECKOPT to never. ILf the CHECKOPT is

everytimechange, then SAS will take precisely one sample for the trace

just before advancing simulated time forward from the current event time
(i.e., after all model activity at the current event time has taken
place). If CHECKOPT is set to everyevent, SAS will sample and record
the designated variables after the execution of every event.

The conditional trace operates much the same as a regular trace,
the difference being that the sample times are determined dynamically
during simulation execution to correspond to those times when the
specified expression evaluates to true. The expression is tested for
the condition at the times specified in CHECKOPT. The regular
expression history trace operates similarly to the regular variable trace;
except that at the sampling time, the value of the boolean expression is
recorded for the regular expression history and the value of a set of
SAN variables are recorded for the regular variable history.

Procedure savehistreg(opt:option) (14, 744) implements the regular

variable history instance trace recording process. The parameter opt

183

indicating whether the trace of the instance with check option

everyevent or everytimechange is to be recorded. Procedure savehistory

starts out by assigning temp to point to the beginning of the regular
variable history record list. The data structures of different
performance traces are described in Chapter III.B.5. (Readers are
advised to refer to the data structures for better understanding.)
Procedure savehistreg then goes through a while loop (14, 751-7536) to
examine all the regular variable history instances. It checks if the
instance's check option equals opt and the next trace recording time

equals tnow. If so, then procedure historynum(tempA.num) is called to

record the value of each variable defined in the instance. The variable
temp is set to point to the next instance record. The loop (14, 751~
756) is repeated until ali the regular variable history instances are
checked.

Procedure historynum(num:integer) (20, 849) is generated by the

Transformation process. Procedure historynum consists of a sequence of
procedure calls to procedure history. In the example model, Simple.dat,
there 1s only one regular variable history instance and only one
varlable trace is specified in the instance, that is why there is only

one call to procedure history(fsm[fsml].czs{l],1,1) (20, 854) to record

the value of the variable, fsm[fsml].czs[l]. The details on the

generation of procedure historynum were described in Chapter IV.C.4.

Procedure history(tempvalue:stringsm,n:integer) (l4, 764) records

the value of the nth variable in the mth regular variable history

instance; n and m are the order of appearance in the SAN file.

184

Procedure history starts out to get a new statlink record (1, 503-508).
The value of the variable and the current simulation time are recorded
(L4, 774~775). The local variable tempvarhist is set to point to the
beginning of the regular variable history instance record list. The for
loop (14, 779-780) moves the pointer pointing to the nth regular
variable history instance record. The local variable, temphist, is set
to point to the record of the first variable. The for loop (14, 784-
785) moves the pointer pointing to the record of the nth variable. The
statlink record, which holds the value of the variable and the current
simulation time, is inserted in the beginning of the list of the data
element of the variable. This cdmpletes the process of recording a
value of a variable in an instance.

Procedure savehistcon(opt:option) (20, 874) implements the

conditional variable history instance trace recording process, the
parameter opt indicating whether the trace of the instance with check

option everyevent or everytimechange is to be recorded. Procedure

savehistcon 1s generated by the Transformation process. The details on
the genertion of procedure savehistcon were described in Chapter
IIL.C.5. Procedure savehistcon starts out by setting temp pointing to
the beginning of the conditional variable history instance record list
(20, 878). 1If a conditional variable history instance is specified to
be recorded and the header of the instance record list is nil, then

procedure execerr(csmname,num,E22) is called. 1In the example model,

Simple.dat, there is only one conditional variable history instance and

only one varilable trace is specified in the instance. Line (20, 882)

185

checks 1f the instance's check option equals opt and function conexp(i)

is called to check if the conditional expression is true. If they are

both true, then procedure stathist(env{env2]}.zp[l],1,1) is called to

record the value of the variable, env[env2],czp[l] in the counditional

variable history instance record list. The implementation of procedure

stathist(tempvalue:string;m,n:integer) (14, 795) is similar to that of

procedure history(tempvalue:string,m,n:integer) (14, 764). Readers can

refer to the description of procedure history to understand the
implementation of procedure stathist.

Procedure saveexphist(opt:option) (14, 846) implements the regular

expression history instance trace recording process, the parameter opt
indicating whether the trace of the instance with check option

everyevent or everytimechange is to be recorded. Procedure saveexphist

starts out by assigning temp to point to the beginning of the regular
expression history record list (14, 852). Procedure saveexphist then
goes through a while loop (14, 855-861) to examine all the regular
expression history instances. It checks if the instance's check option
equals opt and the next trace recording time equals tnow. If so, then

procedure insstatus(cexpst(i),temp) is called to record the boolean

value of the expression in the instance. The local variable temp is set
to point to the next instance record. The loop (14, 855-861) is
repeated until all the regular expression history instances are checked.

Procedure insstatus(cst:boolean,tempexphist:exphistlink) (14, 826)

starts out by getting a new status record (1, 513-518) and stores the

boolean value, cst and the current simulation time in the new status

186

record (14, 832-835)., The new status record is then inserted in the

current regular expression history record pointed to by the pointer

tempexphist (14, 839-840).

When procedure insstatus(cexpst(l),temp) is called inside procedure

saveexphist, the boolean value, cst, is obtained by calling the

function cexpst(i) (14, 858). Function cexpst(i:integer):boolean (20,

890) was generated by the Transformation process. This function
consists of all the boolean expressions specified in the regular
expression history instance. In the example model, Simple.dat, there is
only one expresslion history trace to be recorded. The expression is

evaluated and assigned to the function variable cexpst (20, 895).

9. 1Initialization specification

The user may optionally include an initialization specification as
shown in Figure 3.16 in the SAN system specification. The user may
assign the values of simulation time at which the run should begin
(tbeg) and end (tend), else the default values 0.0 and 10.0 are
assigned, respectively. The user may indicate whether SAS should trap
multiple simultaneous pulsed inputs to single components, other than
environments for which the trap function is individually specified. If

the SAS variable mulpulsecheck is set to true, then SAS will trap the

above mentioned multiple simultaneous pulsed inputs. The default value

for mulpulsecheck is false. The user may also reassign the seed value

of the random number generating function, seed. The default value for

seed 1s 23467823,

187

INIT

tbeg : Theg;
tend : Tend;

mulpulsecheck : true (or false)

seed : integer;

END;

Figure 3.16. Initialization specification format

188

IV. APPLICATION OF THE STATE ARCHITECTURE NOTATION
AND STATE ARCHITECTURE SIMULATOR IN SIMULATING
" DATA COMMUNICATION PROTOCOLS
This chapter explains the operational steps im running SAS. It
begins with the presentation of a SAN model, moves to the Transformation
process and through to the creation of the SAN model executable image.
This chapter also describes the steps involved in executing the SAN
model executable image and different steps in correcting SAN model
specification errors. The last three sections illustrate the use of the
SAN and the SAS 1in simulating data communication protocols by three
examples. The first example simulates a small size discrete system with
three components. The purpose of this example is to walk through the
steps in specifying a SAN model, creating an executable image of the SAN
model and executing the SAN model in the SAS environment. The second
example simulates the start—stop protocol [Piatkowski 198l]. We use all
nine kinds of components in the Start-Stop SAN model. The last example
illustrates the use of the SAN and the SAS in simulating a fairly
complicated data communication protocol, the Advanced Data Communication

Control Procedures (ADCCP) [Piatkowski 1979].

A. Operational Steps in Running SAS

In using SAS to exercise a SAN model, there are two main steps to

follow.

189

1. Specification

The user specifies the system using the SAN formats as described in

Chapter II and stores the specification in a data file e.g.

simple.dat;1l, where "simple" is the name of the data file.

2. Creation and execution of an executable image

The user invokes the SAS procedure SAS.COM to create an executable
image for the simulated system. There are five steps in the creation
and execution of the executable image, namely TRANSFORM, APPEND,
COMPILE, LINK and RUN.

a. TRANSFORM: performs the Transformatiom process as
described in Chapter III.C. Before executing the SAN model, SAS
scans the SAN model and compiles the procedures and boolean expressions
into global PASCAL procedures. Actually, SAS generates ten different

procedures as described in the Transformation process. They are as

follows:

fsmfuanc.pas contains all the procedures declared in the FSM
instances

cfpfunc.pas contains all the procedures declared in the CFP
instances

cfsfunc.pas contains all the procedures declared in the CFS
instances

envfunc.pas contains all the procedures declared in the ENV

iastances

envexpfil.pas

histfile.pas

statsup.pas

conhistfil.pas

cexpfile.pas

iniset.pas

b. APPEND:

PASCAL module, USER.PAS.

190

contains all the boolean expressious declared

in the ENV instaunces

contains the procedure historynum(num:integer)

which is used to sample and save system
variables defined in the regular history
instances

contains the function conexp(num:integer)

tboolean, which holds all the boolean
expressions defined in the counditional variable
history

contains the procedure savehistcon(opt:

option), which 1s used to save system variables
defined in the conditional variable history
instances

contains the function cexpst(num:integer):

boolean, which holds all the boolean
expressions defined in the regular expression
history iunstances

establishes the enumerated names of all
instances corresponding to the component name;
establishes an array of string variables which
contains the strings declared in the procedure

of the SAN specification.

merges the above ten procedures together iunto one

191

¢+ COMPILE: compiles the USER.PAS module to produce an object
mode file, USER.OBJ.

d. LINK: links the object module, USER.OBJ, with the SAS
predefined library SAS.OLB to produce an executable image for the
simulated system, namely SAS.EXE

es. RUN: executes the executable image of the simulated system.

To invoke the SAS command procedure, the user types in the
following command:

"@sas filename step”.

Two parameters must be supplied to the commaund procedure:
"filename" representing the SAN file containing the SAN model and "step"
representing the starting step of the SAS command procedure. There are
five steps in the SAS command procedure as mentioned above. Before a
simulated system is executed, its executable image has to be created
firste To do this, the user should invoke the command procedure with
step="TRANSFORM" to perform the Transformation process. For example:

"@sas filename TRANSFORM".

SAS will print out the component names in the SAN model on the
terminal, when each component is being transformed. The details of the
SAS output message on the terminal will be demonstrated via an example
in the next section. If there is any error in the Transformation
process, then SAS prints out the following message on the terminal:

"TRANSFORMATION ERRORS

ERRORS . . . Take appropriate step to do correction

To check error, type errfile.dat",

192

The details of the error correction steps will be explained later
in this section. If there is no error in the Transformation process,
the ten different procedures are generated as mentioned above and SAS
prints out the followlng message:

“TRANSFORMATION IS GOOD
Append user Module"”.

The above message indizates that SAS is in the APPEND step to merge
all the procedures into a PASCAL module, USER.PAS. At the end of the
APPEND step, SAS continues on to the COMPILE step and prints out the
following message:

“Compile USER.PAS".

In this step, the module USER.PAS is submitted to the PASCAL
compiler to generate the object module, USER.OBJ. If there is any error
in compiling the USER.PAS, the PASCAL compiler will print out the error
message on the terminal and SAS will stop and print out the following
message:

“SAS TERMINATED".

If there is no error in compiling the USER.PAS, SAS will print out
the following meésage:

"Link USER.OBJ with SAS.OLB".

The above message indicates that the USER.OBJ is linked with the
SAS predefined library, SAS.OLB, to produce the simulated system

executable image, SAS.EXE. At the end of the LINK step, SAS prints out

the followlng message:

193

"System is ready to run
To run the system just type 'run'
run or exit".

At this point, the user can type in 'run' to execute the simulation
system. If the user types in 'exit' then SAS exits from its command
procedure and returns to the VAX command mode, which will print out a
'$' sign to indicate the VAX command mode. After the simulated system
executable image is created, the user can invoke the SAS command
procedure to execute the system without going through the Transformation
process again.

"@sas filename run"

There are three major parts in the execution of the simulated
system under the SAS environment. First SAS will call the Data Input
process to read the SAN specification of the simulated system. In case
of any SAN syntax error, SAS prints out an error message on the terminal
and stops. After SAS executes its Data Input process, it will ask the
user if the current simulated system execution starts with New
Initialization or Restart Initialization. SAS prompts the user with the
message on the terminal:

"New Initialization: Y=Yes or N=No".

A user response of 'N' or 'n' means the current execution starts
with Restart Initialization; otherwise, the current simulated system
execution starts with New Initialization. If it is a New
Initialization, SAvaill check 1f the simulated system is initially

stable or not. If the system is unstable, SAS stops and prompts the

194

user with a message:
"SYSTEM IS UNSTABLE".
If the system is stable, SAS will prompt the user with the message:
"SYSTEM IS STABLE".

SAS then starts to execute the System Executive. In case an
execution error occurs, the System Executive releases its control to the
System~Mouitor which allows the user to examine the current system
statuss The user can use the Terminal Mode Command Languages to examine
the status of all the system components. The user may decide to
continue or halt the system execution. If an execution error occurs,
the execution of the event of the error compounent is aborted. If the
user decldes to continue on the system execution, certain unexpected
system execution errors may be generated because of the previous
execution error. Examples of the use of the Terminal Mode Command
Languages will be discussed in the next section. If no execution error
occurs, the System Executive continues execution of the gimulated system
until the current simulation time exceeds the ending time of the
simulation or the system halt variable 1s set to true. When the
execution of the System Executive finishes, SAS asks the user if the
current simulated system status need to be saved by prompting the

following message:

"Do you want to save the current simulated system status?

Y=Yesg N=No?".

195

A user response of 'Y' or 'y' means the current simulated system
status will be saved in the rsfile.dat file for future Restart
Initialization.

At the end of system execution, the system variable traces are
stored in the datafile.dat file; and if any system status information
had been saved during the execution, they are stored in the sysfile.dat
file. In the next section, we will describe several examples of using

SAN and SAS to simulate systems.

3. General steps on errors correction

In case any error occurred in the process of‘creating an executable
image of the simulated system, the user has to take appropriate steps to
make corrections and invoke the SAS command procedure again. Depending
on which step the error occurred in, different corrections are needed.

If an error occurred in the TRANSFORM step, then the user should
take the following actiomns:

a) Examine the errfile.dat file to find out what kind of errors
occurred in the Transformation process. Error messages are
located at the end of the efréile.dat file.

b) Make necessary corrections to the SAN file as suggested by the
error message.

¢) Try again by typing "@sas filename traansform".

If any error occurred in the COMPILE step, then the user should take

the following actions:

196

a) Examine the user.lis file to locate the error; user.lis is a
source listing file generated by the PASCAL compiler in
compiling user.pas.

b) Make necessary corrections to the SAN file as suggested by the
error messages.

¢) Try again by typing "@sas filename transform".

No error should occur in the APPEND and LINK steps. In case there
1s an error, the error should be reported to the implementor or
maintainer of SAS.

At the RUN step, there are three major parts in the execution of
of the simulated system under the SAS environment as mentioned in the
previous sub—section. During the Data Input process, if a SAN syntax
error occurred, the user should take the following correction steps:

a) Examine the errfile.dat file to locate the error. Error

messages are located at the end of the errfile.dat file.

b) Make necessary corrections to the SAN file as suggested by the
error messages.

¢) Users are encouraged to consider trying the RUN step again by
typing "@sas filename run". To start at the RUN step, the
users should make sure that none of the following SAN
specifications were changed in correcting the error:

1) Deletion or addition of a component instance,
ii) Change of instance name,
iii) Reordering of the instances in the specification SAN

file,

d)

197

iv) Changes in procedure or boolean expression declaration,
v) Changes of variable names in the variable history trace.
Even though it is usually safe to restart from the RUN step,
1f the above changes are not made, the user can always start
from the TRANSFORM step by typing "@sas filename transform".

In this case, user.pas, is always compatible to the SAN model.

During the New Initialization process, if the simulated system is

unstable, the user should take the following corrective steps:

a)

b)

c), d)

Examine the sysfile.dat file to locate which compounents are
initially unstable.

Make necessary corrections to the initial values of the system
components, or to the system logic by addition or deletion of
components, or charging the system component interconnectious.

Same as in the Data Input process.

During the System Executive process, SAS may encounter some system

execution errors. When this happens, SAS will print out the error

message ldentifying the faulty compounent, and release control to the

System-Monitor, which allows the user to examine the current system

status.

The user can use the Terminal Mode Command Language to examine

the status of all system components and decide to coutinue or halt the

system execution. Details using the Terminal Mode Command Languages

will be shown in the next section.

198
B. A Simple Discrete System Simulation

1. Description of the SAN model

This sub—section i1llustrates the use of the SAN and the SAS to
simulate discrete systems via a simple discrete system, stored in the
file, simple.dat. A block diagram of the system is shown in Figure 4.1
and the SAN model is listed in Figure 4.2. Users may notice four
different syantax errors in the SAN model of Figure 4.2 shown in circles.
Those errors are purposely left in the SAN model for the demonstration
of error correction steps in the creation and execution of the SAN
model executable image.

The system has three components. One of them is a terminal ENV

compouent named Terminal. The execution time of Terminal is zero and

the start expression check option (STARTEXPCHECK) is everytimechange,
which allows the start event of Terminal to be scheduled after all the
events in the current event set are executed. Terminal has a pulsed
output connected to the pulsed input of the ENV component named

Pulsegen. Pulsegen is a procedure ENV. The execution time of Pulsegen

is one time unit and the STARTEXPCHECK is never. Upon the arrival of a

start pulse from Terminal, Pulsegen will produce either a 'reset' or

'inc' pulse at its pulsed output. Procedure Pulsegenproc performs the
function of randomly producing either a 'reset' or 'inc' pulse. The

pulsed output is loaded into its destination component named Counter.
Counter 1s a FSM compounent with execution time equal to zero. Counter

records the number of 'inc' pulses that have arrived at its pulsed input

ENV

Terminal

ZP.

1

start(p)

ﬁXP. 1

ENV

Pulsegen

ZP.

1

reset,inc(p)

Figure 4.1. Block diagram of a simple discrete system

FSM
XP.1

Counter

Zs.

1

01 ll 21 31

4,5(s)

661

200

ENV Terminal : interlaed
ZP,1 TO Pulsegin XP.1 : start;
FUNCTION : terninai;
deftexcc : 0.0;
STARTEXP : trus;
STARTEXPCHECK : everytimechange;

END;
Pulsegon : interlac C>
al.ZP.1 : start;

XP.,1 FROM Ter :
ZP,1 TO Counter,.XP.1 : reset, inoc;
FUNCTION : procedure
procedure Pulsegenproc;
var i:integer;
atarrayfl..2] of string;

bagin
aC1]:="'reset '
af2]:="'inc L

l:=randint(5);

with env[USPulsegenl , updatestate do

begin

if(i=3) then ntzpl1l:=af1]
elsp ntzpl1]:=al2];

end; {end with}

END;

deftexec:1.0;

STARTEXP : false;

STARTEXPCHECK : never;
END;

FSM Counter : interlaced (ED
S:0,1,2,3,4,5;
defsinit : O
XP.1 FROM Pulsegen, 1 : reset, inc;

ZS.1 UNCONNECTED : 0,1,2,3,4,5;
FNS : procedure
if exp.1='reset' then nts:='0’

else
begin
If es='0'then nts:='1"'
else If &="1' then nts:='2'

else If cs='2' then nts:='3"'
else If ¢s='3"' then nts:='4'
else if cs='4' then nts:='5’
else nts:='5";
end;
END;
FOUTS : procedure
ntzs.1:=nts;
END;
deftexeo : 0,0;

END;

VARHISTORY 1raceCount : regular
VARIABLES : Counter.czs.1;
DTHISTORY : 1,0;

END CHECKOPT : everytimechange;

VARH{ISTORY TracePulise : conditional
VARIABLES : Pulsegen,czp.1;
CONDITION : Pulsegen.czp.1='reset';
CHECKOPT : everytimechange;

END;

EXPHISTORY Tracestatus : regular
EXPRESSION : (Pulsegen,czp.1='Inc')and(Counter.czs,1='1");
DTHISTORY : .1.0;
CHECKOPT : everytimechange;

END;
INIT
theg : 1.0;
tend : 10.0;
END;

Figure 4.2. The SAN model of a simple discrete system

201

up to five. Whenever a 'reset' pulse arrives at Counter, the state of
Counter will be set to '0'. Both the FNS and FOUTS of Counter are
specified via a procedure. The SAN model also includes three different
kinds of performance traces. The regular variable history instance,
TraceCount, records the static output of Counter every time unit; it
records just before simulation time is advanced. The conditional
variable history instance TracePulse, records the pulsed output of

Pulsegen whenever its value is 'reset'. The regular expression history
fulsegen

records the boolean value of the expression (Pulsegen.czp.l='inc') and

(Counter.czs.1="1"') every time unit, it records just before simulation

time is advanced. At the end, the Initialization instance sets the

simulation beginning time, tbeg, and the simulation ending time, tend.

2. Creation of the simulated system executable image

The SAN model of Figure 4.2 is saved in file simple.dat. The
simulated system executable image is created by invoking the SAS command
procedure as shown in Figure 4.3. For clear exposition, we have
underlined the commands typed in by users in Figure 4.3 and added some
line numbers.

After the SAN model is created, the user types in the command in
line (1) to invoke the command procedure SAS.COM by passing the SAN
model file name, simple.dat, and the step, transform(l). SAS will start
the Transformation process. During the Transformation process, SAS
prints out the component names being processed on the terminal ("csm:=

Terminal” means that the current state machine is Terminal). After

(1)¢ Bsas counter.dat transform
FREVIOUS LOGICAL NAME ASSIGNMENT REFLACEID
ceme= Terminal
DONE
(2) TRANSFORMATION ERRORS
(3) ERRORS++Take arrrorriate step to do correction
(4) To check errory ture errfile.dst
(5) % ture errfile.dsat
ENV Terminal ! interlaced
ZF.1 TO Pulseden.XF.1 ¢ starts
FUNCTION ¢ terminals
deftexec 0.07%
STARTEXP ¢ trues
STARTEXFCHECK § everwutimechansdes

* oo o

END
(6) EUN """Fulseden ¢! interlaced
(7) error number = 33 in the lirne rumber Q@
(8) error! undesired Name.ceeeo
(9) It can onlwy be FSMy CFFy CFSy DELF»
(10) DELSy CLKy DERs QUEy ENVy VARHISTORY
(11) EXFHISTORYy INIT» OR END.

(12) $ ed counter.dat
Edit? DREO!LERO170441COUNTER.DAT#1
(13) ¥*sEUNS$SENVS$9
00009 ENV Fulseden ¢ interlaced
(14)*eb
[ORBO:LCRO170441COUNTER.DAT?11
(15) ¢ @sas counter,dat transform
FREVIOUS LOGICAL NAME ASSIGNMENT REFLACEL
csme= Terminal

cems= Fulseden
cemi= Counter
DONE

{16) TRANSFORMATION ERRORS
- (17) ERRORS++ « Take arrrorriste ster to do correction
(18) To check errory tyre errfile.dat
(19)% tyre errfile.dat
ENV Terminal ¢ interlaced
ZF.1 TO Fulsedgen.XF.l ¢ starti
FUNCTION ¢ terminaly
defterec 0.07%
STARTEXF ¢ trues .
STARTEXFCHECK ¢! everwtimechandes

> oo o

END'§

Figure 4.3. Example run to create an executable image for the SAN
model, simple.dat

203

FSM Counter ¢ interlaced
S ¢ 0rl1y2y3v495H
defsinit ¢ OF
XFel FROM Fulseden.ZS.1 ! resetrincs
ZS.1 UNCONNECTED ¢ Orl1y2y3r4+5+ '
FNS ¢ mrocedure
if exr.l=’reset’ then ntsi=’0’
else
tedin
if cs=/0’ then nmtsi=’1"
(20) else if us="""’1’ then ntsi=’2/
(Zlferror number = 74 in the line number
(22Yerror ¢ unesrected character strind
(23) ¢ ed 'counter.dat
Edit! DREO:LRO170441COUNTER.DAT?1

(24) %s1s8cs$42

00042 else if cs=’1’ then nts!

(25) Xeb
COREOSLCRO170441COUNTERTIAT?1]
(26) ¢ Psas_counter.dat transform
FREVIOUS LOGICAL NAME ASSIGNMENT REFLACED
(27) Sters unclear
(28) SAS TERMINATED
(29) $ @sas counter.dat transform
FREVIOUS LOGICAL NAME ASSIGNMENT REFLACED
(30) csmi= Terminal
(31) esmé= Fulseden
(32} esmi= Counter
(33) VARHIST name!= TraceCount
(34) VARHIST namei= TraceFulse
(35) EXFHIST mame t= Tracestatus
(36) LIONE
(37) TRANSFORMATION IS GOOD
(38) Arrend user module
(39) Comrile user.ras
(40)Link user.obd with sas library
(41) Sustem is readwy to run
(42;T0 run the sustem Just ture ‘run’
(43) pun or exit! exit ’
$

42

-
=00

204

processing the component, Terminal, the Transformation process
encounters a SAN specification error. SAS then terminates the
Transformation process and prints out lines (2), (3), and (4) on the
terminal. In (5), we type the errfile.dat file to locate the error.
From (6) to (11), we notice that there is a misspelling of the instance
kind ENV. From (12) to (l4), we edit the simple.dat file to change the
misspelled EVN to ENV. 1Imn (15), the SAS command procedure is invoked
again to start from the Transformation process. While the
Transformation process scans the component, Counter, it stops and
indicates a Transformation error in (16) to (185. In (19), we type the
errfile.dat file to locate the error. . From (20) to (22), we notice that
the string 'xs' can not exit by itself within a local procedure. The
string can either be 'xs.n', 'xp.n', or 'cs', where n is an integer. 1In
the example SAN model, the string 'cs' is expected at the above
position. From (23) to (25), we edit the simple.dat file to change the
string ‘xs' to 'cs'. 1In (26), the SAS command procedure is invoked
again, but this time the step is misspelled. SAS responds with the
messages in (27) and (28) on the terminal. In (29), we invoke the SAS
command procedure again. This time SAS prints out all the instance
names and the message "TRANSFORMATION IS GOOD" to indicate that there is
no SAN error detected in the Transformation process from (30) to (37).
SAS then prints out the message "Append user module"” to indicate that
SAS is merging all the transformed procedures into a user module,
user.pas. In (39), SAS prints out the message "Compile user.pas” to

indicate that SAS had submitted the useripas file to the PASCAL compiler

205

to compile the user.pas file. There is no compilation error in the
user.pas file. In (40), SAS points out the message "Link user.obj with
sas library” to indicate that the PASCAL linker is linking the user.obj
with the sas.olb to produce an executable image of the SAN model. At
the end of the linking process, SAS prompts the user with the messages
in (41) to (43) to ask the user if he wants to execute the SAN model
executable image or stop at this point. We type in the word 'exit' in
(43) to exit from the SAS command procedure. This completes the

creation of a SAN model executable image.

3. Execution of the SAN model executable image

In this sub-section, we will walk through the detailed steps to
execute the SAN model in the file simple.dat. Figure 4.4 consists of a
list of commands and responses in executing the SAN model executable
image (simulated system). For clear exposition, the lines typed by the
users are underlined and some line numbers added. In the actual runm,
the underlines do not appear. In line (1), we type in the command to
invoke the SAS command procedure to execute the simulated system. While
the SAS scans the SAN file, simple.dat, the SAS detects an undefined
component name (smname) in line (10) of the simple.dat file. In (2),
(3), and (4), the VAX editing commands are used to change the component

name from Termainal to Terminal. In (5), we invoke the SAS command

procedure to execute the simulated system again. This time we encounter
another syntax error in (6). In (7), (8) and (9), we use the VAX editing

commands to change 'ZS' to 'ZP'.

206

(1) ¢ @sas counter.dat run.

PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

temrsm=Terminal

tempsm=Pul seden

DONE

ENV Terminal ¢ interlaced
ZP. 1 TO Pulseden«XP. 1 ¢ starts
FUNCTION terminalsé

deftexec ! 0.000000000E+003

STARTEXP trues
STARTEXPCHECK ! everygtimechandej

END#$
ENV Pulseden ¢ interlaced

XP. 1 FROM Termainal.”"""ZP.1 ! starti,
error number = 34 in the line number 10
error! undefined smname
Total number of errors is 1

(2) 3 ed counter.dat

(3) %

Edit?! DRBOILBO170443COUNTER.DAT?1
T inalsT {nal410
00010 XP.1 FROM Terminal.ZP.1 ! starti

(4) xeb

(5%

Figure 4.4.

CDRBOSCBO170441COUNTER.DAT#11

@s3s coynter.dat run

PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED

tempsm=Terminal
tempam=Pulseden
temprsm=Counter
DONE
ENV Terminal ¢ interlaced
ZP. 1 TO Pulseden.XP. 1 ¢ starti

FUNCTION ¢! terminalji
deftexec ¢ 0,000000000E+00+%

- STARTEXP ¢ trues
STARTEXPCHECK ! everygtimechandeji

END#

ENV Pulseden ¢! interlaced
XP. i FROM Terminal.ZP. 1 ¢ starts
ZP. 1 TO Counter.XP. 1 ¢ resetrinct

FUNCTION ¢ procedure
function randint(maxiinteder)lintederiexterns

procedure Pulsedenproci
var itinteders;
alarraull..21 of strinds

bedin

Example run in executing the SAN model executable image

207

afll¢=’regset
al2lt=’inc
id=randint(S);
with envCUsPulsedenl] » urdatestate do
bedin
if? (i=3) then ntzel1li=alfl]
else ntzplL1]1i=8L21]%
end? {end withl)
end}’
END3$
deftexec! 1.000000000E+007%
STARTEXP ¢ falses
STARTEXPCHECK ! nevery#
END#

FSM Counter ! interlaced
S ¢ 0r192939495%

defsinit ¢ 0O}

(6) XP. 1 FROM Pulsedan.Z5.7""1 ! resetrincs
error number = 29 in the line number 36
errortZP is exrected.

Total number of errors is 1

(7y3_ed _counter.dat
Edit?! DRBO!LBO17044JCOUNTER.DAT#1
(8) ¥sZSZP36
00036 XP.1 FROM Pulsegen.ZP.1 ! resetrinci
(9) %eb_
(10)CDRBO:E3017044JCDUNTER.DAT$1]
$ @sas _counter.dat run
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
(11) tempsm=Terminal
(12) temrsm=Pulseden
(13) temrsm=Counter
(14) New Initialization ? Y=Yes or N=No. Y
SYSTEM INITIALIZATION ¢ CHECKING FOR UNSTABLE MACHINE
(15) %% SYSTEM IS STABLE XX
SYSTEM HAS BEEN STARTED
(16) ===~ SCHEDULE =-== ENV Terminal START 1.000000000E+00
EXECUTE ¢ ENV Terminal START 1.000000000E+00

(17)ENV ¢ Terminal TNOW:= 1,000000000E+00

(18) #¥p_all_
SYSTEM STATUS AT TNOW $:= 1.000000000E+00

FSM Counter

CS:= 0

QXP, 182 =

ezse 1= 0

Execution Delawi= 0.000000000E+00
Execstatusi= IILE

Figure 4.4. (continued)

- =

208

ENV Terminal

czp, 1i= -

Execution timel= 0,000000000E+00
Execstatust= BUSY
STARTEXPCHECK ¢= EVERYTIMECHANGE
“updatetimed= 1,000000000E+00
ntzp, li=-

ENV Pulseden
CXPe 18z =
czpe 1i= -
Execution timel!= 1,000000000E+00
Execstatusi= IDLE
STARTEXPCHECK = NEVER
(19) #3_s511
(20) #3_ZP.1t=gtrt
ZP Or 2S numberi= 1
errnumi=4,,,,0utrut value is not valid

(21) #2_2ZP.1i=gtart

=P Oor zs number!= 1
(22) #e
(23) ==== SCHEDULE --=-- ENV Pulseden START 1.,000000000E+00

(24) EXECUTE ¢ ENV Pulseden START 1,000000000E+00
(25) =~~= SCHEDULE ~--- ENV Pulseden UPDATE 2+000000000E+00
(26) ==== SCHEDULE ---- ENV Terminal START 1.,000000000E+00

(27) EXECUTE ¢ ENV Terminal START 1.,000000000E+00

ENV ¢ Terminal TNOW:= 1,000000000E+00
(28) #»_eventfile

Eventset.timel= 1,000000000E+00 Eventsat.counti=
Eventset.timel= 2.000000000E+00 Eventset.counti=
UPDATE ENV Pulseden

(29) #a

(30) EXECUTE ¢ ENV Pulseden URDATE 2.000000000E+00

(31) ===~ SCHEDULE ---- FSM Counter START 2,000000000E+00
(32) EXECUTE ¢ FSM Counter START 2+,000000000E+00

(33) =~=— SCHEDULE ~--- ENV Terminal START 2+,000000000E+00

EXECUTE ! ENV Terminal START 2,000000000E+00

(34) ENV ¢ Terminal TNOWS= 2,000000000E+00
(35) #w.all

errnumi=2..,, .4nrecodnized command

(36) #2_all
SYSTEM STATUS AT TNOW != 2,000000000E+00

FSM Counter
(37) Cs:= 1

oxPe 183 -

czse 1i= 1

TFigure 4.4. (continued)

209

Execution Delaul= 0,000000000E+00
Execstatusi= IDLE

ENV Terminal

ezp, 112 -

Execution timel= 0.,000000000E+00
Execstatusi= BUSY
STARTEXPCHECK := EVERYTIMECHANGE
updatetimet= 2,000000000E+00

ntzp, 1!z~
ENV Pulseden
CxP, 1¢= -

czp, 1802 inc
Execution timel= 1,000000000E+00
Execstatusi= IDLE

STARTEXPCHECK ¢ = NEVER
(38) #3_ZP,1i=gtart
ZP Oor s numberi= 1
(39) #&.
(40) ==== SCHEDULE =~-- ENV Pulseden START 2,000000000E+00
(41) EXECUTE ¢ ENV Pulseden START 2+000000000E+00
(42) ==== SCHEDULE ~==- ENV Pulseden UPDATE 3+000000000E+00

(43) ===-—= SCHEDULE -=--~- ENV Terminal START 2+000000000E+00
(44) EXECUTE ¢ ENV Terminal START 2+000000000E+00

ENV ¢ Terminal TNOW!= 22,000000000E+00
(45) #r_Pulseden
ENV Pulseden
cxp, 1= start
ezp, 1= inc
Execution timei= 1,000000000E+00
Execstatusi= BUSY
STARTEXPCHECK = NEVER
updatetimed= 3,000000000E+00
ntzp, li=inc
(46) #2 -
{47) EXECUTE ¢ ENV Pulseden UPDATE 3+,000000000E+00
(48) =~~= SCHEDULE --~-~ FSM Counter START 3+,000000000E+00
(49) EXECUTE ¢ FSM Counter START 3+,000000000E+00
(50) ==== SCHEDULE =-=~- ENV Terminal START 3+000000000E+00
EXECUTE ¢ ENV Terminal START 3+.000000000E+00

(51)ENV ¢ Terminal TNOWS= 3+,000000000E+00
(52) #»_Counter
FSH Counter
(53)CSt= 2
CXPe 18 -
ezZse 1= 2
Execution Delayl= 0.,000000000E+00
Execstatust= IDLE

Ficure 4.4. (continued)

(54) #aZP.1¢=start

ZF Or =S numbert=

210

1

(55) #a_ '
==== SCHEDULE ~---= ENV Pulseden START 3+000000000E+00
EXECUTE ¢ ENV Pulse<den START 3+000000000E+00
wm—— SCHEDULE =---== ENV Pulseden UPDATE 4,000000000E+00
wmme SCHEDULE --=-=- ENV Terminal START 3+000000000E+00
EXECUTE ¢ ENV Terminal START 3+000000000E+00
ENV ¢! Terminal TNOW!= 3.,000000000E+00

(56) #p_Pulseden

- ENV Pulseden
oxXp, 1= start
czps 1= inc
Execution timet= 1.,000000000E+00
Execstatusi= BUSY
STARTEXPCHECK ¢ = NEVER
uprdatetimet= 4,000000000E+00

T ntze.e 1i=inc

(57) #a
EXECUTE ¢ ENV Pulseden UFDATE 4,000000000E+00
m=== SCHEDULE -=--- FSM Counter START 4,000000000E+00
EXECUTE ¢ FSM Counter START 4,000000000E+00
m——= SCHEDULE =-~~- ENV Terminal START 4,000000000E+00
EXECUTE ¢ ENV Terminal START 4,000000000E+00
ENV ¢ Terminal TNOW!= 4,000000000E+00

(58) $3 ZP.1¢=start
2P Or =S numberi= 1

(59) #e.
===~ SCHEDULE ===~ ENV Pulseden START 4,000000000E+00
EXECUTE ¢ ENV Pulseden START 4,000000000E+00
==== SCHEDULE =-=--=-= ENV Fulseden UPDATE S.000000000E+00
=== SCHEDULE ~--=- ENV Terminal START 4,000000000E+00
EXECUTE ¢ ENV Terminal START 4,000000000E+00
ENV ¢ Terminal TNOW:= 4,000000000E+00

(60) #» Pulseden
ENV FPulseden
cxpe 1= start
czpe 1= inc
Execution timet= 1.000000000E+00
Execstatusi= BUSY
STARTEXPCHECK = NEVER
updatetimel= $5,000000000E+00
ntze, 1i=inc

(61) #e
EXECUTE ¢ ENV Pulseden UPDATE 5.000000000E+00
—mm— SCHENULE =~=-== FSM Counter START S5.,000000000E+00
EXECUTE ¢ FSM Counter START 5.000000000E+00
== SCHEDULE ~=== ENV Terminal START $5+000000000E+00

Figure 4.4. (continued)

211

EXECUTE ¢ ENV Terminal START 5.000000000E+00
ENV ¢ Terminal TNOW!= S5,000000000E+00
(62) #p Counter
FSM ounter
CSi= 4
oxp, 1= -
czg. 18= 4
Execution Delaut= 0,000000000E+00
Execstatusi= IDLE
(63) #3 ZP.1i=gtart
P Or Zs numberi= 1
(64) #
e
~wem SCHEDULE ==<= ENV Pulseden START S+000000000E+00
EXECUTE ¢ ENV Pulseden START ' $.000000000E+00
== SCHEDULE ==== ENV Pulseden UPDATE 6.+,000000000E+00
== SCHEDULE —=-- ENV Terminal START 5+.000000000E+00
EXECUTE ¢ ENV Terminal START 5+000000000E+00
ENV 3 Terminal TNOW:= $,000000000E+00
(65) #p_Pulseden
ENV Pulseden
cxpe 1!= start
czp, 18= ine
Execution timet= 1.,000000000E+00
Execstatusi= BUSY
STARTEXPCHECK (= NEVER
updatetimet= 4,000000000E+00
ntze, 1¢a1ine
(66) ¥e_ -
EXECUTE ¢ ENV Pulseden UPDATE 6+000000000E+00
wmem= SCHEDULE =-==- FSM Counter START 6+000000000E+00
EXECUTE ¢ FSM Counter START 44+000000000E+00
m~we== GCHEDULE =-=—== ENV Terminal START 6+000000000E+00
EXECUTE ¢ ENV Terminal START 6+.000000000E+00
ENV ¢ Terminal TNOWe= &,000000000E+00
(67) #» Counter
FSM Counter
CSt= §
oMPe 183 -
czge 1= 5
Execution Delawt= 0.000000000E+00
Execstatusi= IDLE
(68) 3 _ZP.13=s5tatt
2P Or 2S5 numberis 1
(69) #e_
—=e== SCHEDULE ~~-- ENV Pulseden START 6.+,000000000E+00
EXECUTE ¢ ENV Pulseden START 64+000000000E+00
m—ew= SCHEDULE =~-=--= ENV Pulseden UFDATE 74+000000000E+00

Figure 4.4. (continued)

212

mm—— SCHEDULE ---- ENV Terminal START 46.000000000E+00
EXECUTE ¢ ENV Terminal START 46+000000000E4+00

(70) ENV ¢ Terminal TNOWE:= 4.000000000E+00
(71) #=_P
errnumi=S..coagmname is not defined
(72) #» Pulseden
ENV Pulseden .
P, 1t= start
czr, 1= inc
Execution timet!= 1.000000000E+00
Execstatusi= BUSY
STARTEXPCHECK = NEVER
updatetimel= 7.,000000000E+00

ntze, 12!=inc

(73) #2_STARTCHECK!=never
CHECKOPT ¢ = NEVER ~
(74) #£2.0 '
(75) #e_
(76) EXECUTE ¢ ENV Pulseden UPDATE 7 +000000000E+00
(77) ==== SCHEDULE ~--- FSM Counter START 7+000000000E+00
(78) EXECUTE ¢ FSM Counter START 7+000000000E+00
(79) ==== SCHEDULE ~--=- ENV Terminal START ?+000000000E+00

(80) EXECUTE ¢ ENV Terminal START ?+000000000E+00

ENV ! Terminal TNOW!= 2,000000000E+00

(81) #a_ZP1li=gtart
errnumé=10..+.ZP or ZS ar CHECKOPT is exrected

(82) #2_ZP.l3=gtart

=P Or =s numberi= 1

(83) #e_
~=== SCHEDULE ~--=- ENV Pulseden START ?+.000000000E+00
EXECUTE ¢ ENV Pulseden START 9.000000000E+00
wem== SCHEDULE ~-=~ ENV Pulseden UPDATE 1,000000000E+01
EXECUTE ¢ ENV Pulseden UPDATE 1.000000000E+01
e SCHEDULE =-=-= FSM Counter START 1.000000000E+01

EXECUTE ¢ FSM Counter START 1.000000000E+01
(84) THE SYSTEM HAS BEEN STOPPED
(85) Do wou want to save the current simulated sustem status?
(86) Y=Yes N=No PN
(87) DONE
$ lo

Figure 4.4, (continued)

213

In (10), we invoke the SAS command procedure to execute the
simulated system again. This time the SAS goes through the Data Input
processs Lines (11), (12) and (13) indicate that the SAN specification

of the component Terminal, Pulsegen and Counter are processed. In (14),

the SAS asks the user 1f the initialization process ia a New
Initialization. We type in 'Y' to indicate yes. In (15), the SAS
indicates that the system is stable. The SAS gives control to the
System Executive to execute the simulated system.

We initialized the simulation beginning time, tbeg to 1.0 and the
start expression check option of the ENV component Terminal is

everytimechange; thus just before tnow=1l.0 is advanced the start event

of Terminal 1s scheduled as shown in (16). In (17), we know that the SAS
is executing the start event of Terminal and in (18), SAS prompts a '#'
sign to indicate the SAS is in the terminal command mode. In (18), we
type in the command to print the status of all the system components.
The SAS in response prints the status of all the system compounents at
our terminal. In (19), we type in the command to save the status of all
the system components in the file, sysfile. In (20), we assign a pulsed
output to Terminal. Unfortunately the pulse value, 'strt', is not an
element of the pulsed output set. In (21), we type in the new pulse
value 'start'; this time it is accepted by the SAS. Im (22), we type in
the command to exit from the terminal mode.

The 'start' pulse from the Terminal pulsed output is loaded into
the ENV component Pulsegen. A start event of Pulsegen is scheduled in

the event file as shown in (23). 1In (24), the start event of Pulsegen is

214

executeds Since Pulsegen has an execution time equal 1.0, an update
event of Pulsegen is scheduled in the event file with event time equal
2.0 as shown in {25). At the end of execution of all the events in the
current event set with event time equal 1.0, a start event of Terminél
1s scheduled into the event file as shown in (26). In (27), the start
event of Terminal 1s executed to allow the user to examine the system
status before the simulation time is advanced. In (28), we type the
command to print the event file. The SAS prints the event file on the
terminal indicating that there is an update event of Pulsegen to be
executed at tnow=2.0. In (29), we exit from the terminal mode.

In (30), the SAS executes the update event of Pulsegen, which
generates a pulse at its pulsed output and loads the pulsed output into
its destination component, Counter. A start event of Counter is
scheduled in the event file as shown in (31). In (32), the start event
of Counter is executed. Siunce the execution time of Counter is zero,
the update event of Counter is executed immediately following the start
event of Counter. That is why there is no update event scheduled at the
end of the execution of the start event of Counter. The component
Terminal also has an execution time of zero, which implies no update event
needs to be scheduled at the end of the execution of the start event of
Terminal. In (33), a start event of Terminal i1s scheduled after all the
events in the current event set are executed. In (34), the SAS executes
the Terminal start event. In (35), we type a wrong commaﬁd. In (36), we
type fhe command to print tbe status of all the system component again.

/

Notice that the current state of Counter has changed from '0' to 'l' as

215

shown in (37), which indicates that a 'inc' pulse has been loaded into

Counter from Pulsegen. In (38), we assign a new 'start' pulse to the

Terminal pulsed output. In (39), we type in the command to exit from the
terminal mode.

In (40), (41), (42), (43) and (44), the SAS repeats the same
process in (23), (24), (25), (26) and (27) to execute the Pulsegen. In
(45), we type the command to print the status of Pulsegen. Notice that a
new 'inc' pulse is generated at the Pulsegen pulsed output. In (46), we
type in tﬁe command to exit from the terminal mode. In (47), (48),

(49), (50) and (51), the SAS repeats the same process in (30), (31),
(32), (33) and (34) to load the pulse from Pulsegen into Counter and
execute the start and update event of Counter. In (52), we type the
command to print the status of Counter. Notice that the current
simulation time is 3.0, and we had sent two 'start' pulses into Pulsegen
which in turn had sent two 'ine' pulses into Counter. The current state
of Counter is '2' as shown in (53).

From (54) to (69), we repeat the steps of sending 'start' pulses
from the Terminal pulsed output, which are similar to the previous
steps. In (70), the SAS is executing the Terminal start event at
tnow=6.0. In (71), we type in the wrong component name. In (72), we type
the command to print the status of Pulsegen. In (73), we type the
command to change the start expression check option of Terminal to
never, which means the start expression of Terminal will never be

evaluatede In (74), we type the command to indicate a start event of

216

Terminal needs to be scheduled at tnow=9.0. In (75), we type the command
to exit from the terminal mode.

Since the start expression check option of Terminal had been
changed to never, the start event of Terminal will not be scheduled at
the end of the execution of all the events in an event set. From (76)
to (80), the SAS executes the simulated system until tnow=9.0 and
schedules a start event of Terminal. In (8l), we type the wrong command
again. In (82), we assign a new 'start' pulse to the Terminal pulsed
output. In (83), we type the command to exit from the terminal mode.

Since we initialize the simulation ending time, tend, equal 10.0,
the SAS executes the simulated system until all the events in the event
set with event time equal 10.0 and stops. SAS prints out a message 'THE
SYSTEM HAS BEEN STOPPED' as shown in (84). In (85) and (86), SAS asks
the user if the current simulated system status need to be saved. We
type in 'N' to indicate no. SAS then prints the message 'DONE' to
indicate the end of SAS execution.

The SAN model in the file simple.dat contains three performance
trace instances; these were saved in the file datafile.dat, as listed in
Figure 4.5, The first trace is the regular variable history instance,
TraceCount. It traces the static output of Counter, which shows that
the Counter counts up to five 'inc' pulses at time equal 5.0 and the
static output stays at '5' until time equal 10.0; the static output is
set to '0's The second one is the conditional variable history
instaunce, TracePulge. It traces the occurrence of the 'reset' pulse at

the Pulsegen pulsed output. We notice the a 'reset' pulse occurs at

217

VARHIST TraceCount t regular

Counter.czs.1 Time
1.000000000E+00

0
1 2,000000000E+00
2 3.000000000E+00
3 4,000000000E+00
4 5.000000000E+00
5 6,000000000E+00
5 7.000000000E+00
5 8,000000000E+00
5 9, 000000000E+00
0 1.000000000E+01
VARHIST TracePulse : conditional
Pulsegen.czp.1 Time
reset 1.000000000E+01
EXPHIST Tracestatus : regular
FALSE 1.000000000E+00
TRUE 2.000000000E+00
FALSE 3.000000000E+00
FALSE 4, 000000000E+00
FALSE 5.000000000E+00
FALSE 6.000000000E+00
FALSE 7.000000000E£+00
FALSE 8.000000000E+00
FALSE 9.000000000E+00
FALSE 1.000000000E+01

Figure 4.5. A listing of the datafile.dat file

218

time=10.0, which in turn sets the static output of Counter to '0'. The
third one is the regular expression history lustance, Tracestatus. The
expression is true only at time=2.0 otherwise it is false as shown in
Figure 4.5.

During the simulated system execution, we typed in the command to
save the status of all the system components at simulation time equal
1.0, The status of all the system components were saved in the file,
sysfile.dat as shown in Figure 4.6.

During the simulated system execution, the variables and expression
traces are each temporarily stored in a linked 1list as described in the
last chapter. The values in the linked list will be stored in the
datafile-dat file on the disk at.the end of the system execution. If
the computer system breaks down or the user types in the character
'CNTL-C' to interrupt the current program execution during the
simulation execution time, the simulation execution will be stopped
immediately. If this happens, all the variable and expression traces of
the current simulation rum will be lost.

As for the system component status, once we type a command in the
Terminal mode to save the system component status, the component
statuses are stored into the sysfile.dat in the disk immediately.
Unless.the disk information is lost, the system component status can

always be obtained from the gysfile.dat file.

Figure 4.6.

219

SYSTEM STATUS AT TNOW := 1,000000000E+00

FSM Counter

CS:= 0

cxXp., 1i= =

czs, 1:= 0

Execution Delay:= 0.000000000E+00
Execstatus:= |DLE

ENV Terminal

czp., 1i= =

Execution time:= 0.,000000000E+00
Execstatus:= BUSY
STARTEXPCHECK:= EVERYT IMECHANGE
updatetime:= 1,000000000E+00
ntzp., 1:=-

ENV Pulsegen

0

X

T
—

Execution time:= 1,000000000E+00
Execstatus:= {DLE
STARTEXPCHECK: = NEVER

A listing of the sysfile.dat file

220

ﬁ; Execution of the SAN model executable image with execution errors

This sub-section illustrates the response of SAS to system
execution errors. The same SAN model as in the previous sub-section is
used. This time we will try to send a 'start' pulse to the component
Pulsegen while Pulsegen 1s busy. Figure 4.7 presents the listing of an
example run. In line (1), we invoke the SAS command procedure with the
RUN step to execute the SAN model executable image. SAS asks the user
if the initialization process is a New Initialization. In (2), we type
in 'Y' to indicate yes. The system is stable. In the beginning, SAS
schedules a start event of Terminal, which has a STARTEXPCHECK equal

everytimechange. In (3), SAS indicates to the user that a start event of

Terminal is being executed. In (4), we assign a "start' pulse at the first
pulsed output of Terminal, which is connected to the first pulsed input
of Pulsgen. In (5), we type 'e' to exit from the terminal mode. The

start pulse is then loaded into the pulsed input of Pulsegen at tnow=1.0

and a start event of Pulsegen is scheduled at tnow=1.0 (6). Imn (7), the
start event of Pulsegen is executed and an update event of Pulsegen is
scheduled at tnow=2.0 (8). At the end of execution of all the events in
the event set with event set time=1l.0, a start event of Terminal is
scheduled (9). In (10), the start event of Terminal is executed and we
type in the Terminal Mode Command Language to print out the current
event file content (11). In (12), we type ‘'e' to exit from the terminal
mode. SAS then advances the simulation time to 2.0 and executes the
update event of Pulsegen, which generates a pulsed output. The pulsed

output 1s loaded into its destination component, Counter, and a start

(1) ¢ @s3s counter.dat run
PREVIOUS LOGICAL NAME ASSIGNMENT REPLACED
tempsm=Terminal
tempsm=Pul seden
tempsm=Counter
(2) New Initialization ? Y=Yes or N=No. Y .
SYSTEM INITIALIZATION ¢ CHECKING FOR UNSTABLE MACHINE
XKk SYSTEM IS STABLE XX
SYSTEM HAS BEEN STARTED
~mm= SCHEDULE =--=— ENV Terminal START 1.000000000E+00
EXECUTE ¢ ENV Terminal START 1,000000000E+00

(3) ENV ¢ Terminal TNOW:= 1,000000000E+00
(4) #a_ZP.13=start

ZP Or S number= 1
(5) #e
(6) ~=== SCHEDULE --=-= ENV Pulseden START 1,000000000E+00
(7) EXECUTE ¢ ENV Pulseden START 1,000000000E+00
(8) ==== SCHEDULE =-=-- ENV Pulseden UPDATE 2,000000000E+00
(9) ==== SCHEDULE =-=-= ENV Terminal START 1.,000000000E+00

(10) EXECUTE ¢ ENV Terminal START 1,000000000E+00

ENV ¢ Terminal TNOWS= 1.,000000000E+00
(11) #2_eventfile

Eventset.timel= 1,000000000E+00 Eventset.counti=
Eventset.timet= 2,000000000E+00 Eventset.count =
UPDATE ENV Pulseden
(12) #e
EXECUTE ¢ ENV Pulseden UPDATE 2+000000000E+00
(13) =——- SCHEDULE -~~~ FSM Counter START 2,000000000E4+00
(14) EXECUTE ¢ FSM Counter START 2+000000000E+00
(15) ==== SCHEDULE ---- ENV Terminal START 2.,000000000E+00

EXECUTE ¢ ENV Terminal START 2,000000000E+00

ENV ¢! Terminal TNOW:!= 2,000000000E+00
(16) #a3 ZP.1i!=start

=P Or =S numbert= 1

e
(17) ==== SCHEDULE =~-~-- ENV Pulseden START 2,000000000E4+00
(18) EXECUTE ¢ ENV Pulseden START 2,000000000E+00
(19) ===-= SCHEDULE ~-~=-== ENV Pulseden UPDATE 3.,000000000E+00
(20) ~=== SCHEDULE =~=~-~ ENV Terminal START 2.000000000E+00

(21) EXECUTE ¢ ENV Terminal START 2,000000000E+00
_ ENV ! Terminal TNOW!= 2,000000000E+00
(22) #a3_ZP.1¢!=start

TP or zs numberi= 1

Figure 4.7. Listing of an example run with system execution error

222

I
(23) hello execerr
(24) EXECUTION ERROR NUMBER ¢= 1015
(25) Message ¢ the destiration component is in rend or busy state
(26) CURRENT SIMULATION TIME ¢ 2.000000000E+00
(27) CURRENT EVENT START
(28B) CURRENT MACHINE ! Terminal
(29) DESTINATION MACHINE ¢ Pulseden
(30) Pulsed inPput Number $ 1
SYSTEM EXECUTION ERRORs CONTROL IS GIVEN TO UPM

ENV ¢ S$SYSTEM-_MONITOR TNOW:= 2,000000000E+00
M .
ENV Terminal
czre 1i= start
Execution timel= 0,000000000E+00
Execstatusi= IDLE
STARTEXPCHECK := EVERYTIMECHANGE
(31) #p _Pulseden
ENV Pulseden
cxXFe 1i= start
czpese 1= inc
Execution timel= 1.000000000E+00
(32) Execstatusi= BUSY
STARTEXPCHECK ¢ = NEVER
updatetimel= 3,000000000E+00
ntzer, 1i=zinc .
(33) #h.
~m=—= SCHEDULE =~== ENV Pulsedgen START 2,000000000E+00
SYSTEM HALT IS TRUE
THE SYSTEM HAS BEEN STOPPED
(34) Do yvou want to save the current simulated sustem status?
(35) Y=Yes N=No PN
(36) DONE
(37) %

223

event of Counter is scheduled (13). 1In (14), the start event of Counter is
executeds At the end of execution of all the events in the current event
set, the start event of Terminal is scheduled (15). When the start event
of Terminal is executed, a 'start' pulse is assigned to the pulsed output

of Terminal at tnow=2.0 (16). The pulsed output is loaded into the

pulsed iﬁput of Pulsegen. From (17) to (20), SAS repeats the same process
in (6) to (9) to execute the system components at tnow=2.0. At the end

of execution of all events in the current event set, the start event of
Terminal is also scheduled and executed (20) and (21). 1In (22), we assign
another start pulse to the pulsed output of Terminal. After we type 'e'
to exit from the terminal mode, the pulsed output is loaded into its
destination component. At this point, SAS detects an execution error.

SAS prints out the error message on the terminal as shown in (23) to

(30). From the error message we notice that Terminal pulses out a start
pulse to the first pulsed input of Pulsegen, while Pulsegen is busy. SAS
then gives the control to the System—Mounitor to allow the user to examine
the current system status. In (31), we type in the command to point out
the status of Pulsegen. The execution status of Pulsegen is busy (32).

In (33), we type 'h' to halt the simulated system execution. In (34), SAS
asks the user if he wants to save the current simulated system status.

In (35), we type 'N' to indicate no. 1In (36), SAS prints out 'DONE' to
indicate the end of SAS execution and returns to the VAX command mode

indicated by the '$' (37).

224

5. Demonstration of the Restart Initialization process

The Restart Initialization process allows users to coantinue the
execution of a SAN model simulation from the state where the simulation
last stopped. This sub-section illustrates the Restart Initialization
process using the simple SAN model in the previous sub—section. Figure
4.8 presents the listing of an example run. This example demonstrates
that after having saved the total system status at the end of a
simulation run, the simulation can be re-initialized to the same state
where the simulation last stopped and continued.

In line (1), we invoke the SAS command procedure with the RUN step to
execute the SAN model executable image. SAS then asks the user if the
initialization process is a New Initialization. In (2), we type in 'Y' to
indicate yes, the system is stable. In the beginning SAS schedules a
start event of Terminal (which has a STARTEXPCHECK equal

everytimechange). The steps frocm line (1) to line (21) are similar to

those Iin the previous example (Figure 4.7). Readers may refer to the
previous sub-section to understand the above steps.

At the end of execution of all the events in the event set with
event set time = 2.0, a start event of Terminal 1s scheduled (20). 1In
(21), the start event of Terminal is executed and we type in the command
to change the check option of the start expression of Terminal to
everyevent (22). This is done so that we can examine the system status
after the execution of each event. In (23), we type 'e' to exit from the
terminal mode. The simulator advances to tnow=3.0 and executes the

update event of Pulsegen, which in turn schedules a start event of

225

(1) $ Esas simple.dst run

Frevious lodical name assisgnment rerlaced
temrsm=Terminal
temrsm=Ful seden
temram=Counter
(2) New Initialization 7 Y=Yes or N=No. Y,
SYSTEM INITIALIZATION ¢ CHECKING FOR UNSTABLE MACHINE
¥k SYSTEM IS STAERLE %%
SYSTEM HAS HEEN STARTED
= GCHEDULE ===~ ENV Terminal START 1.,000000000E+00
EXECUTE ¢ ENV Terminal START 1.000000000E4+00

(3) ENV ¢ Terminal TNOW:= 1.000000000E+00
(4) #a sdi=start

TP Or =S numberd= 1
(5) #e
(6).~==~ SCHEDULE ~--- ENV Pulseden START 1.,000000000E+00
(7) EXECUTE ¢ ENV Pulseden START 1.,000000000E+00
8) =mwm SCHEDULE --=-- ENV Fulsederi UFDATE 2.000000000E+00
9)ieee~ SCHEDULE -~~- ENV Terminal START 1.,000000000E+00

(10)EXECUTE $¢ ENV Terminal START 1.,000000000E£+00
(I)ENV ¢ Terminal TNOW!= 1.000000000E+00

(12) %2
EXECUTE ¢ ENV Fulseden UFDATE 2,000000000E+00
(13) ~—ww SCHEDULE =--~- FSM Counter START 2,000000000E+00
(14 EXECUTE ¢ FSM Counter START 2.000000000E+00
(1§)=m=~ SCHEDULE =---- ENV Terminal START 2,000000000E+00

EXECUTE ¢ ENV Terminsl START 2+,000000000E+00

ENV ¢ Terminal TNOW:= 2,000000000E+00
(16) #a_ZP.1t=start

IF Or =6 numberi= 1
(17) 2g

~=== SCHEDULE =---- ENV Fulseden START 2,000000000E4+00
(18) EXECUTE ¢ ENV Pulseden START 2.000000000E+00
(19) ===- SCHEDULE =~~~ ENV Fulseden UFDATE 3,000000000E+00
(20) ~=~= SCHEDULE =---- ENV Terminal START 2.,000000000E+00
(21) EXECUTE ¢ ENV Terminal START 2,000000000E+00

(22)ENV .¢ Terminal TNOWS= 2,000000000E400
#23 STARTCHECK ! =everyevent

. CHECKOFT $= EVERYEVENT -
(23)4e,
(2)EXECUTE ¢ ENV Pulseden UFLIATE 3+000000000E+00
(25)===~ SCHEDULE ~--~ FSM Counter START 3+000000000E+00
(26)—=~— SCHEDULE -~~~ ENV Terminal START 3+000000000E+00

(27)EXECUTE ¢ ENV Terminal START 3+000000000E+00

Figure 4.8, Example run to demonstrate the Restart Initialization process

226

ENV ¢ Terminal TNOW!= 3.,000000000E+00

(28) 4= a1l
SYSTEM STATUS AT TNOW &= 3.,000000000E+00

' FSM Counter
(29).cs3=
(30)exr,s 18= inc
czs, 1i= 1
Execution lelawd= 0.,000000000E+00
(31) Execstatust= PEND

ENV Terminal

crr, i -
. Execution timei= 0,000000000E+00
(32) Execstatusi= BUSY

STARTEXFCHECK ¢ = EVERYEVENT

urdatetimet= 3,000000000E+00
(33).ntz=r. 1¢=—

ENV ° Fulseden

OMP, 1i= -

czr.e 1= dine o

Execution timel= 1,000000000E+00
(34) Execstatusi= INLE

STARTEXFCHECK $= NEVER
(35) #¢_eventfile
Eventset.timel= 3,000000000E+00 Eventset.countt=

(36).. START FGSM Counter
(37)&f 3.0
(38) #h .

SYSTEM HALT IS TRUE

THE SYSTEM HAS REEN STOPFED

o vou want to save the current simulated sustem status?
(39) y=ves N=No 7Y
{40) ONE .
(41)$ @sas simrle.dat run

Frevious lodical name asssignment rerlaced

FPrevious lodical reme asssidgrment rerlaced

temrsm=Terminal

tempsm=Fulseden

temrsm=Counter
(42) New Initislization ? Y=Yes or N=No. N

e SCHEDULE ---- FSM Cournter START 3.000000000E+00
SYSTEM HAS EEEN STARTED
(43) =~~~ SCHEDULE --=-- ENV Terminal START 3.000000000E+00

(44) EXECUTE ¢ ENV Terminal * START 3+,000000000E+00
ENV ¢ Terminal TNOW!= 3,000000000E+00

(45) % _s11
SYSTEM STATUS AT TNOW ¢= 3.000000000E+00

Figure 4.8. (continued)

227

FSM Counter
CSi=

exrEe 18= ine
czsg, 1i=

Execution lelsyi= 0.,000000000E+00
swecstatusi= PEND

ENV Terminal

czre 1z -~

Execution timel= 0,000000000E4+00
Execstatusi= BRUSY

STARTEXPCHECK = EVERYEVENT
urdatetimel= 3,000000000E+00
ntap. 13=-

:]
ENV Fulseden
exMpy 1= -

czre 1i= inc
Execution time:= 1.,000000000E+00
Erxecstatus? IDLE

(46)STARTEXPCHECh NEVER
$p_eventfil .
Eventset.timet= 3.,000000000E+00 Eventset.counti=
) START FSHM Counter
(47) 42
(48) EXECUTE ¢ FSM Counter START 3+000000000E+00
(49) ~==~ SCHERULE --~~ ENV Terminal START 3+000000000E400

(S0)EXECUTE ¢ ENV Terminal START 3+000000000E+00

VENV ¢ Terminal TNOWS= JF.000000000E+00

(51) #e_ 311l
SYSTEM STATUS AT TNOW = 3,000000000E+00

FSM Counter

Csé= 2

OXE, 13= =

ozs. 1i= 2

Execution Delaut= 0.000000000E4+00
Execstatusi= IDLE

ENV Terminal
QTP t= -
Execution timel= 0.,000000000E+00

Execstatusi= BUSY

STARTEXPCHECK ¢ = EVERYEVENT
urdatetimel= 3.000000000E+00
ntzp, 1$=-~

ENV Pulseden

CXPe 1im -

Figure 4.8. (continued)

228

ezP. 13= inec
Execution timet= 1.000000000E+00
Execstatusi= IDLE

STARTEXFPCHECK ¢ = . NEVER

#r eventfile
(SZ)Eventset.timez= 3+000000000E+00 Eventset.counti=
_ £h

SYSTEM HALT IS TRUE

THE SYSTEM HAS EEEN STOFFED .

[lo wou want to save the current simulated sustem status?
Y=Yes . N=No TN,

DONE

Figure 4.8. (continued)

229

Counter (25). In (26), the simulator schedules a start event of Terminal
and executes the start event (27). Imn (28), we type in the command to
print the status of all the components. We see that the current state of
Counter is 'l' (29), and an 'inc' pulse arrives at Counter's pulsed input
(30), and Counter is Pending (31). Terminal is Busy (32) and the update
record shows that no new pulsed output value is assigned to Terminal
(33). Pulsegen is Idle (34). In (35), we type in the command to print
the event file. The event file shows that a start event of Counter is
pending to be executed at tunow = 3.0 (36). In (37), we type the command

to schedule a start event of Terminal at tnow = 3.0 just before the

system halt command is typed (38). This is done so that when the
simulated system is re-initialized SAS will first execute the start event
of Terminal and allow users to examine the system status before the
simulation run continues. In (39), SAS asks if the current simulated
system status is to be saved. We type in 'Y' to indicate yes (40). The
current simulated system status is saved in the sysfile.dat file. The
current simulation run is stopped. In (41), we invoke the SAS command
procedure again. SAS asks the user if the initialization process is a
New Initialization. Iun (42), we type in 'N' to indicate that it is not a
New Initialization (which implies Restart Initialization). The Restart
Initialization process is invoked to reload the previous system status
from the sysfile.dat file. Since a start event of Terminal was scheduled
at tnow = 3.0 in the previous run, a start event of Terminal is scheduled
and executed at tnow = 3.0 (44). In (45), we type the command to print

the simulated system status. The system status is exactly the same as

230

the system status when the simulation run last stopped. In (46), we type
the command to print the event file. The event file is exactly the event
file which the system had when the last simulation run was terminated.

In (47), we type 'e' to exit from the terminal mode. The system execution
is then continued.

The start event of Counter is executed (48). At the end of the
execution of the start event of Counter, a start event of Terminal is
scheduled (49) and executed (50). In (51), we examine the system status
to check if the system executlon proceeds properly or not. The current
state of Counter changes from 'l' to '2' due to the arrival of a second

'inc' pulse. The execution status of both Counter and Pulsegen are Idle,

and that of Terminal is Busy. The system status shows that the simulated
system continues to execute properly after the Restart Initialization

process. In (52), we stop the system execution.

C. Start=Stop Link Simulation

This section illustrates the use of six of the nine kinds of
components (all except CFP, CFS, and DELS) of State Architecture
Notation in simulating a Start=Stop link [Piatkowski 1981]. It also
demonstrates the use of procedure and list options in representing the
FNS, FOUTP, and FOUTS functions, the use of terminal and procedure
options in the ENV FUNCTION specification, the use of different kinds of
variable history trace specifications, and how to create a model

subsystem to test a protocol. The Start-Stop link simulation consists

231

of the Start~Stop model as suggested by [Piatkowski 198l] and a test
controller subsystem interconnected with the Start—Stop model to provide
the test bed for the start—stop protocol. A block diagram of the Start-

Stop link simulation is shown in Figure 4.9

1. Start-Stop model

The Start-Stop link without the test controller is a data
communication link supporting a simplex (unidirectional) connection
between a sender and a receiver in which a data stream of eight-bit
blocks (bytes) is transmitted via the well-known start-stop protocol.
The sender of the start-stop protocol basically takes the eight-bit byte'
and transmits it bit-serial by adding a start bit at the beginning of
the transmission and two stop bits at the end. The receiver of the
start—stop protocol strips off the start and two stop bits, assembles
the eight-bit block into a byte and presents the byte to the next higher
level.

Figure 4.10 presents the SAN model of the Start-Stop link
simulation. The sender of the Start-Stop link 1s built-up from eleven
basic components: Seundmgr (FSM), Sendclk (CLK), Seundbit (FSM), and an
eight bit shift register built up of eight one-bit shift registers,

Sendsrl, Seudsr2, =----, Sendsr8 (FSM). The sender connects to the

receiver via a static delay (DELS) named Medium. The receiver is built-
up from twelve basic components: Rcvdet (DER), Rcvmar (FSM), Rcvelkl
(CLK), Rcvclk2 (CLK), and an eight bit shift register built up of eight

ripple connected one-bit shift registers, Rcvsrl, Revsr2, =-—-, Rcvsr8

Yester Contreller

- Senduser
(eNnY)
P 251 258
clmrcp (1)) 0,1(S) F————* ®
A v
xRl Sendcenverier Send Xpa
Sl @ 4 o b 2RI 58
PT) 1 £cp)
S'hlrt ‘ST"’F Link
ai(s)
¥ - ~
ped] Xs.1 xs.8 =51 Sendbit Hedium
Semlmar' 2Pt fo—eee— = 254 T ELS) Zs.1
(FsH) P c.1cp) i bis) (B 15

WHCONNECTED

T

X
& L, ¥4
& 12p2 Tester u
degep F (eNv) R&"ni?r
KF(
— xs;l XSz Xs.1
& ®ep 1 ~ ~7
. Rovdet
m xs.t (DER) ZP1 =
. .
©> 2pé charpd
PP
0.1G?
2.1C5)
F)
e Sl
IIVSI’)I

Figure 4.9. Block diagram of the Start-Stop 1ink and Test Controller

€ee

234

{start-stop Link Mode July 20, 1982}

ENV Senduser ¢ Interlaced
ZP.1 TO Sendmgr,XP,1,Sendconverter,XP, 1
Z5.1 TO Sendmgr.XS. 1, Sendconverter.XS, 1
Z5.2 10 Sendmgr.xs.2,Sendconverter.xs.2
ZS.3 TO Sendmgr.XS, 3, Sendconverter,.Xs, 3
ZS.4 TO Sendmgr.XS. Y4, Sendconverter.XS, 4
Z5.5 TO Sendmgr.XS.5,Sendconverter,.XS.5
ZS.6 TO Sendmgr,XS.6,Sendconverter,XS.6
Z5.7 TO Sendmgr.XS.7,Sendconverter,XS.7
Z5.8 TO Sendmgr,XS. 8, Sendconverter.XS.8

po o

— ke d d ok kD)

M]
-

COCOoTCOCOn

S e e e e ow oW oW

FUNCTION: terminal;

defzsinit : 0,1,0,1,0,1,0,1;
deftexec: 0.0;

STARTEXP : true;

STARTEXPCHECK : everytimechange;

END;

ENV Sendconverter : interlaced
XP,1 FROM Senduser.ZP.1 :
XS.1 FROM Senduser,ZS.1
XS,2 FROM Senduser,ZS.2
XS.3 FROM Senduser,ZS.3
XS. 4 FROM Senduser.ZS.Y4
XS.5% FROM Senduser.ZS.5
XS.6 FROM Senduser.ZS.6
XS.7 FROM Senduser,ZS.7
XS.8 FROM Senduser,Z5.8
XS.9 FROM Sendmgr.ZS.1
ZP.1 TO Sendque.XP,1 :

..

QOO0 0O0CCOa
D od et bk b b b a D
v %e ve N wewewewewe

—_— e % e w = o ow

l

*..
w
o
[%]
<

FUNCTION : procedure

Procedure Sendconverterproc;

begin
glth envfUSSendconverter], updatestate do
e

in
If{cxpL1]="'char "Jand
(cxs£91="'Idle ' Ythen

begin

ntzpL 11L11:=cxsC1I1{1];

ntzpr11023:=cxsg2]c1 1

nthL1J£3J'-CXSL3Jt1J;

ntzpg1IC43:=cxsCUILT1 s

ntzptlJL51:=cxsL5]L11;

ntzpC1lL6]:=cxsg61L13;

ntzpC11L73:=cxsL7IC17;

ntzpC131r83:=cxsL81011;
end
else

ntzpf13i=null;

end;
end; {end of Sendconverterproc)
»

deftexec:0.0;

mulpulsecheck : false;

STARTEXP: true;

STARTEXPCHECK: never;

END;

Figure 4.10. The Start-Stop link SAN model

235

ENV Rcvuser : interiaced
XP.1 FROM Revmgr.ZP.4
XS.1 FROM Rovsri1.ZS.1
XS.2 FROM Revsr2.ZS.2
XS.3 FROM Rcvsr3.ZS.3
XS.4 FROM Revsry.ZS.h4
XS.5 FROM Revsr5.ZS.5
XS.6 FROM Rcvsr6.ZS.6
XS.7 FROM Revsr7.Z2S.7
XS.8 FROM Recvsr8.Z2S.8
ZP.1 TO Tester.XP.1 :
ZS.1 TO Tester.XS.1 :

=

S S LD

-

=

POCSCOCOOOOON

RS
e ==

F0) o0 20 or oo on vo se oo o

..

FUNCTION : procedure

Procedure Rcvuserprec;
begin
glth envLUSRevuser], updatestate do
egin

if cxpL1J="char ' then
begin

Y

ntzpLi1y:="char
ntzsplari1J:=cexsLi1JL1
ntzsf1jr2l:=cxsca21r!
ntzsCI1Ic3i=exsp3ig!
ntzsE1JLU J:=cxsLyal
ntzsL1353:=cxsLbhl1C
ntzsL13£67:=cXsp6IL
ntzsg13 L7J:=cxsCc7JL
4 ntzs{11[81:=cxsc8 10
end;

1
J
3
1
b/
J
]
J

e Mo me e ws wo we ua

end;
end; {end of Rcvuserprocj
END;

defzsinit:00000000;

deftexec:0.0;

mulpulsecheck : false;

STARTEXP: true;

STARTEXPCHECK: never;
END;

Figure 4.10. (continued)

236

ENV Tester : interlaced
XP.1 FROM Revuser.ZP.1 : char;
XP.2 FROM Sendque.ZP.1 : *;
XS.1 FROM Rcvuser.ZS,1 : #;
ZP.1 UNCONNECTED : Goodbyte Badbyte;
ZP.2 TO Sendque.XP.2 : deq;

FUNCTION : procedure
Procedure Testerproc;

var
a : arrayf{1..47 of string;

begin
a[]]::'coodbyte
a[2]:= Badbyte
a:3]:= char
agll:=
wit? envEUSTesherJ,updatestate do
n
(F cxpL1]=aC3] then ntzpL2]:=afh]
else
if ?xpt2]<>nu|| then
9
if expl2]=cxs{1] then ntzp[1l:=al17]
else ntzp[1J:=al2];

end;
end; {end with}
end; {end Testerprocy

END;

deftexec:0.0;
STARTEXP : true;
STARTEXPCHECK : never;

END;

QUE Sendque : interlaced
XP.1 FROM Sendconverter,ZP,1 : #;
XP.2 FROM Tester.ZP.2: deq;
ZP.1 TO Tester.XP.2 : *#;
ZS.1 UNCONNECTED : open,closedempty,closednotempty;
deftenq : 0.0;
deftdeq : 0.0;
END;

Figure 4.10. (continued)

FSM Sendmgr : interlaced
S:)dle,Start,1,2,3,4,5,6,7,8, 5t
defsinit:ldle;

XP.1 FROM Senduser,ZP.1
XP.2 FROM Sendclk.ZP.,1
XS.1 FROM Senduser,ZS.1
XS.2 FROM Senduser.ZS.2
XS.3 FROM Senduser.z$,.3
XS.4 FROM Senduser.ZS.Yy
XS.5 FROM Senduser,ZS.5
XS.6 FROM Senduser,ZS.6
XS.7 FROM Senduser.ZS.7
XS.8 FROM Senduser,ZS.8
XS.9 FROM Sendsrit.ZS.1
ZP.1 TO Sendc|k,XP,1
ZP,.2 TO Sendsril,XP,1
ZP.3 TO Sendsr2,XP,1
ZP. 4 TO Sendsr3.XP,1
ZP.5 TO Sendsry, XP,1
ZP.6 TO Sendsr5,XP.1
ZP.7 TO Sendsr6.XP.1
ZP.8 TO Sendsr7.XP.1
ZP.9 TO Sendsr8.XP,1
ZP,10 TO Sendsrl,.XP.2
ZP,11 TO Sendbit.XP.1
ZS.1 TO Sendconverter

char;
meoll

.- . e

e %o wswe we we wo wa we we

CF = = b b b

Vot oL L L L L L LS oo b000t00a

A TR A LR T R

ee o8 s 28 se en se oo se oo

s
0,
0,
0,
0,
o,
0,
o,
ol
sh
o,
S.

X id

FNS : list
Idle/char,-/%,#
Starh/-,timeou
Start/char,-/#,
/=, timeout/*,*
1/char,=/#,#, *
2/-,t|meout/
2/char,-/#,#,
3/- .tvmeout/
3/char,~/%,#,
u/-,timeout/
h/char,=-/#,#,
5/-,tlmeout/
S5/char,-/%, %,
6/-, tumeout/ ,
6/char,-/* ¥, *
7/-,tlmeout/
7/char,=/%, #,
8/-,timeout/*
8/charp,-/# #
Stopl/-,tlmeou
Stopt/char,=-/#%
St0p2/-,timeout/

ENStopZ/char,-/* #,

%~
ke -

XL KN k= ke

e Jlwe jjwe it

\"

o

V= Vs vy~

*v
LR

Ve

F

FI 0 0 %1 %
*0 R~ O\ X\ k&

*‘

'
t
, 2 ’

#, # # #
0 ’ ’
* W R, * * #

FOUTP : list
ldle/Char, /% # # # # # # # #

start/-, timeout/
1/=,timeout/#,*,

#* N'*'ﬁ‘*‘* ﬁ'
* *'*’*’*,* ‘N'
2/-'t|'meout/*‘# * # #_# * H#=

Figure 4.10. (continued)

237

op1,Stop2;

t:

le,Busy;

F3y

v

v
o

v

-

li~e flwe flvs

v
[o-]

v
w
cr
=]
©
pury

*s we || we

#*,#=>St0p2;
=>Stop1;
, R, E=>(dle;
*—>Stop2'

=>start,cxs.1,cxs,.2,cxs.3,cxs.4,cxs.5,
cxs,6,cxs.7,cxs.8,~,0;

*, ¥=>start, -, =,~,=,=,~,-,=,sh,cxs,9;
>Start'-l-t-)-l-l-'-l-l sh,cxs.9;
=>start,=,=,=,=,~,=,=,=,58h,cxs.9;

238

3/-,timeout/*, *,*,*,*,*,*,*,*=>StaPt,‘,‘,-,‘,',',-,‘,Sh,CXS.9;
4/-,timeout/*, *,*,*,*,*,*,*,*—>start,-,-,-,-,-,-,-,-,sh,cxs.9;
5/':t‘mQOUt/* *:*;*v*r*r*’*y* >start,-,-,-,-,-,-,-,-,sh,cxs.9;
6/':timQOUt/* *l*l*ﬁ*l*l*)*l*=>startl-l-l-I-l-l-)-l- sh,cxs.9;
7/=, timeout/*, *)*D*D*J*D*P*D*=>Startl-l-J-I-I-)-l-)-lsh cXs.9;
8/~, timeout/#, # # # # & # # H=Sgtart, -, <, =, =,=,=,=,=,=,1;
Stopl/-,tlmeout/*,*,*,*,*,*,*,* *=>start,=,=,=,=,=, ===, =, 13
END;
FOUTS : list
Idle => |dle;
=> Busy;
END;
deftexec:0.0;
END;
FSM Sendbit : intertaced
S:1,h;
defsinit:h;

XP.1 FROM Sendmgr ZP, 11 : 0,13
ZS.1 TO Medium.XS,1 : ,h

FOUTS : list
1=>1;
h=>h;

END;

deftexec:0.0;
END;

FSM Sendsrt : interlaced
$:0,1;
defsinit:0;
XP.1 FROM Sendmgr.ZP
XP.2 FROM Sendmgr,ZP
XP.3 FROM Sendsr2.ZP
ZP.1 TO Sendsr2.XP.2
ZP,2 UNCONNECTED : O
Z8.1 TO Sendmgr.XS.9

FNS :list

*

~

1

-

|

o

~
nunauun
VVvvVvy
—-—C a0
.. we we we

FOUTP s list

deftexec 0.0;
END

Figure 4.10. (continued)

239

FSM Sendsr2 : interlaced

§:0,1; .
defsinit:0;
XP.1 FROM Sendmgr.ZP.3 : O
XP.,2 FROM Sendsrit.zZP,1 :
XP.3 FROM Sendsr3.zZP.2 : O
ZP.1 TO Sendsr3.XP.2 : H
ZP.2 TO Sendsri.XP,3 : 1
ZS,1 UNCONNECTED : 0,1
FNS :1list

*/0;-;'/ =>0;

*/1,=,=/ =>1;

*/':';0/ =>0;

#/e,=,1/ =>1;

-

FOUTP : list
#/-,8h,-/ =>sh,cs;

END;

FOUTS : procedure
ntzs.1:=nts;

END;
deftexec:0.0;
END;
FSM Sendsr3 : interlaced
$:0,1;
defsinit:0;
XP.1 FROM Sendmgr.ZP.4 : 0,1;
XP.2 FROM Sendsr2,ZP,1 : sh;
XP.3 FROM Sendsrhy.ZP.2 : 0,1;
ZP.1 TO Sendsry4.XP.2 : sh;
ZP.2 TO Sendsr2.XP.3 : 0,1;
ZS.1 UNCONNECTED : 0,1;
FNS :1ist
*/0:';'/ =>0;
¥, ==/ =21,
*/-J-Io/ =>0;
Hf=y=, 1/ =>1;
END;

*/-,8h,-/ =>sh,cs;
END;
FOUTS : procedure
ntzs.l:=nts;
END;

deftexec:0.0;
END;

Figure 4.10. (continued)

FSM Sendsry : interlaced

S:0,1;

defsinit:0;

XP.1 FROM Sendmgr.ZP.5

XP.2 FROM Sendsr3.zZP.1 :

XP.3 FROM Sendsr5,ZP.2
1

PrS

ZP.1 TO Sendsr5,XP.2
ZP,2 TO Sendsr3.XP.3
ZS.1 UNCONNECTED : O,
FNS :tist
*/01':'/ =>Q}
®/1,=-,-/ =>1;
*/';'10/ =>0;
Hmymy1/ =213

e

END;

FOUTP : list
#/~,sh,~/ =>sh,cs;

ENO;

FOUTS : procedure
ntzs.1:=nts;
END;

deftexec:0.0;
END;

FSM Sendsr5 : interlaced
$:0,1;
defsinit:0;
XP.1 FROM Sendingr.ZP.6 : 0
XP.2 FROM Sendsry.ZP,1 :
XP.3 FROM Sendsr6.ZP.2 0
ZP.1 TO Sendsr6.XP.2 :
ZP.2 TO Sendsr4,XP,3 :
ZS.1 UNCONNECTED : 0,1;
FNS :list :

5
0

*/0,=,=-/ =>0;
¥/1,=,-/ =>1;
#/=,=,0/ =>0;
¥)=0=01/ =27,

END;

FOUTP : Ilist
#/-,sh,-/ =>sh,cs;

END;

FOUTS : procedure
ntzs,1i=nts;

END;

deftexec:0.0;

END;

Figure 4.10. (continued)

240

FSM Sendsr6 : interlaced
S$:0,1;
defsinit:0;
XP.1 FROM Sendmgr.ZP.7 :
XP.2 FROM Sendsr5.ZP.1 :

ZP.1 TO Sendsr7.XP.2 :Os
’

0
XP.3 FROM Sendsr7.ZP.2 : g
1

ZP,2 TO Sendsr5.XP,3 @
ZS.1 UNCONNECTED : 0,1;

*/0;'}'/ =>0;
WA AL
#)=, =0/ =>0;
*/';-11/ =>1;
ND;
FOUTP : list
*/-,sh,-/ =>sh,cs3
END;

FOUTS : procedure
ntzs.1:=nts;
END;

deftexec:0.0;
END;

FSM Sendsr7 : interlaced

$:0,1;

defsinit:0;

XP.1 FROM Sendmgr.ZP.8 :
XP.2 FROM Sendsr6.ZP,1 :
XP.3 FROM Sendsr8.zZp,2
ZP,1 TO Sendsr8,XP.2 :
ZP,2 TO Sendsr6.XP.3 :
ZS.1 UNCONNECTED : 0,1;
FNS :list

8
0,

FOUTP : list
#/-,sh,~/ =>sh,cs;

FOUTS : procedure
ntzs.,l:=nts;
END;

deftexec:0.0;
END;

Figure 4.10. (continued)

h

.. e we

, 1
sh
)1
;

5
1;

241

242

FSM Sendsr8 : interiaced
S:0,1;
defsinit:0;
XP.1 FROM Sendmgr.Z
XP.2 FROM Sendsr7.Z
XP.3 UNCONNECTED :
ZP.1 UNCONNECTED :
ZP,2 TO Sendsr7.XP.
ZS.1 UNCONNECTED :

QwmwoOvT

*

~

-

1

[}
nuun
VvVVVY
~_~O -
e e we e

FOUTP : list
#/~,8h,=-/ =>sh,cs;

END;

FOUTS : procedure
ntzs.1:=nts;

END;

deftexec:0.0;
_END;

CLK Sendctk : interlaced
XP.1 FROM Sendmgr.ZP.1 : start,reset;
ZP.1 TO Sendmgr.XP.2 : timeout;
ZS.1 UNCONNECTED : reset,running,expired;
deftclk:1.0;
. END;

DELS Medium :intertaced
XS.1 FROM Sendbit.ZS.1 : t,h;
ZS.1 TO Rcvmgr,.XS.1,revdet.XS.1 : 1,h;
defzsinit: h ;
deftdel : 3.0;
END;

FSM Rcvmgr : interlaced
S:idle,start,1,2,3,4,5,6,7,8;
defsinit:idle;

XP.1 FROM rcvdet.ZP.1 :r,f;

XP.2 FROM Rcveikl.ZP,1 : timeout;
XP.3 FROM Revelk2,ZP.1 : timeout;
XS.1 FROM Medium.ZS.1 : l, H

ZP,1 TO Revelkl,XP.1
ZP.,2 TO Revelk2,XP,1
ZP.3 TO Revsr8.XP.1 0,1;
ZP.4 TO Revuser,XP,1 :char;

FNS : list
idle/f,-,~/#* => start;
start/#*, timeout,~/%* => 1
1/%,-, timeout/# => 2;
2/%,=, timeout/* =>
3/%,=-, timeout/* =>

5/* -t

6/*,-,tlmeout/* =>

7/%, -, timeout/* =>8

8/%,-, timeout/* =>idle;
END;

Figure 4.10. (continued)

FO

EN
de

END;

FSM
S:

UTP : list

idle/f,=,=/# =>start,=,=-,~;
start/%, timeout,-=/h =>=,start,1,-;
start/#, timeout, =/l =>=-,start,0,~;

1/#*,=, timeout/h
1/%,=, timeout/|
2/#%,=,timeout/h
2/%,-,timeout/|

»
3/%,-,timeout/h
3/%, -, timeout/|
Y%, -, timeout/h
bh/#*, -, timeout/|
5/*,-,timeout/h
5/%,-,timeout/|
6/#*, -, timeout/h
6/*,—,timeout/|
7/%,=, timeout/h
7/%, =, timeout/|
8/%,~, timeout/*
D-
ftexec : 0.0;
Revsrg
0,1;

defsinit:0;

XP.1 FROM Revmgr.ZP.3
ZP.1 TO Revsr7.XP.1 :
ZS.1 TO Recvuser.XS.8 :

FNS

END;
FOUTP : procedure
i (xp 1<> ')
If (cs—'O'
END;
FOUTS : procedure
ntzs.l1:=nts;
END;
deftexec:0,0;
END;
FSM Recvsr? ¢
S:0,1;
defsinit:0;

XP.1 FROM Rcvsr8.ZP.1
ZP.1 TO Revsr6.XP,1
ZS.1 TO Revuser.XS,7 :

FNS :
if (cxp.1='0') then nts:
If (exp.1="1") then nts--

procedure

=>=,s8tart,1,=;
=>=~,start,0,~;
=>=~,start, 1,~;
=>=-,start,0,~;
=>=-,start,1,-;
=>=-,start,0,-;
=>=,start,1,~-;
=>=,start,0,-;
=>=,start,1,-;
=>~,start,0,-;
=>=,start,1,-;
=>=,start,0,=;
=>=,start,1,-;
=>=-,start,0,=-;
=> =,=-,-,char;

Iinteriaced

s G,
0,1;
0,

if (cxp.1='0') then nts:='0’';
if (cxp.1="1") then nts:="1'

procedure

END;

Figure 4.10.

then

243

) then ntzp.1:='0Q'

else ntzp. 1:=t17

interlaced

(continued)

244

FOUTP : p ocedure'

if xp 1<> '=') then ,
if (cs-'o) then ntzp.1:='0
else ntzp.1:="1';

END;

FOUTS : procedure
ntzs, 1:=nts;

END;
deftexec:0.0;
END;
FSM Rcvsré : Interiaced
S$:0,1;
defsinit:0;
XP.1 FROM Rcvsr7.ZP.1 : 0,1;
ZP,1 TO Revsr5.XP.1 ¢ 0,1;
ZS.1 TO Revuser.Xs.6 : 0,1;

FNS : procedurc
if (cxp. 1—’0) then nts:='0';
it (exp.1='1"') then nts:="1";
END;

FOUTP ¢ procedure
if {c xp 1<> '-’) then
if (cs-'o } then ntzp.1:='0’
else ntzp.1:i='1
END;

FOUTS : procedure
ntzs.1:=nts;
END;

deftexec:0.0;
END;

FSM Rcvsrd : interlaced
S:0,1;
defsinit:0;
XP.1 FROM Revsr6.ZP.1 @ 0O,
ZP.1 TO Revsri XP,1 : 0,1;
ZS.1 TO Revuser.X$.5 ¢ 0,

FNS : procedurc
if (exp.1='0') then nts:='0';
if (exp.1='1") then nts:="1';

END;
FouTe procedure
if (cxp.1< '-') then
if (cs-'o) then ntzp.1:='0'
else ntzp.1:="1";
END;

FOUTS : procedure
ntzs,1:=nts;
END;

deftexec:0.0;
END;

Figure 4.10. (continued)

245

FSM Revsrlt : interlaced
5:0,1;
dofsinit:0;
XP.1 FROM Revsrs5.ZP.1
ZP.1 TO Revsr3.XP,1 : 1
ZS.1 TO Recvuser.XS.4 : 0

FNS : procedure
If (cxp.1='0") then nts:='0';
if (cxp.1="1") then nts:="1';

END;
FOUTP : procedure
if (cxp.1<> '=') then
if (cs='0"') then ntzp.1:='0"'
else ntzp.1:='1";
END;

FOUTS : procedure
ntzs,l:=nts;

END;
deftexec:0.0;

END;

FSM Revsr3d : interlaced
$:0,1%;

defsinit:0;

XP.1 FROM Rcvsrl,ZP.1
ZP,1 70 Revsr2,.XP.1 ¢
ZS.1 TO Revuser,XS.3

1;

¢ 0,
0,1;
0,1

FNS : procedure
if (cxp.1='0') then nts:='0';
if (exp.1="1"'}) then nts:="1';
END;

FOUTP : procedtire
if (cxp.1<> '='}) then
If (cs='0') then ntzp.1
1

Ol
else ntzp. 1

1
'
END;

FOUTS : procedtire

ntzs.l:=nts;
END;

deftexec:0.0;
END;

Figure 4.10. (continued)

246

FSM Rcvsr2 : intertaced
S:0,1;
defsinit:0;
XP.1 FROM Recvsr3.ZP.1 ¢
ZP.1 TO Revsrl.XP,1 : 0O,

0,1;
13
ZS.1 TO Revuser.Xs,2 @ Q,1;

1

FNS : procedure
if (cxp.1="'0') then nts:='0
If (exp.1="1"} then nts:="1
END;

P : procedtire
if (cxp.1<> '=') then
if (cs='0') then ntzp,1:='0"'
else ntzp,1:="'1"
END;

FOUTS : procedure
ntzs.1:=nts;
END;

deftexec:0.0;
END;

FSM Recvsrl : interliaced
$:0,1;
defsinit:0;
XP.1 FROM Rcvsr2.ZP.1 : 0,7;
ZP.1 UNCONNECTED: 0,1;
ZS.1 TO Revuser ,XS.1 : 0,1;

FNS : procedure
if (cxp.1='0") then nts:='0Q';
if (cxp.1='1') then nts:="'1";
END;

FOUTP : procedure
if (cxp.1<> '='}) then
if (es='0') then ntzp,1:='0'
else ntzp,1:="'1";
END;
FOUTS : procedure
ntzs.1:=nts;
END;

deftexec:0.0;
END;

Figure 4.10. (continued)

247

DER rcvdet : interlaced
XS.1 FROM Medium.ZS,1 :
ZP,1 TO Revmgr,XP,1 : r

END;

CLK Revelkl : interlaced
XP.1 FROM Revmgr,ZP.1 : start;
ZP.1 TO Revingr XP,2 : timeout;
ZS.1 UNCONNECTED : reset, running,expired;
deftcik:1.,5;
END;

GLK Rovelk2 ¢ interlaced
XP.1 FROM Rcvmgr.ZP.2 : start;
ZP.1 TO Revingr,XP.3 : timeout;
ZS.1 UNCONNECTED : reset,running,expired;
deftclk:1.0;
END;

VARHISTORY TraceMedium : regular
VARIABLES : Medium.cxs,1;

DTHISTORY 1.0;
p CHECKOPT : everytimechange;
ND;

VARHISTORY TraceSendconverter : conditional
VARIABLES : Sendconverter.czp.1;

CONDITION : Sendconverter.czp.l <> '=';
CHECKOPT : everytimechange;
END;

VARH!STORY TraceRcvuser : conditionai
VARIABLES : Revuser.czs,1;
CONDITION : Revuser.czp.1<>'=';

NSHECKOPT : everytimechange;

END;

VARHISTORY Tracelester : conditional
VARIABLES : Tester.czp.1l;
CONDITION : Tester,czp.1<>'«t;

NSHECKOPT : everytimechange;

END;

INYT
tbeg : 1,0;
tend : 150.0;
mulpulsecheck : true;
END;

Figure 4.10. (continued)

248

(FSM). The functions of the components in the sender and receiver of the
Start-Stop link have been explained by [Piatkowski 198l]. Here we
highlight the use of component features in simulating the Start-Stop link
and its Test Controller.

Sendmgr, a finite-state machine (FSM), incorporates the serial
sending of the start bit, the eight-bit user data and two stop bits to
the receiver. Sendmgr has twelve different states as specified in the §
line of the Sendmgr specification. It has two pulsed inputs, XP.l and

XP.2, connected to Senduser.ZP.l and Sendclk.ZP.l, respectively. There

are nine static inputs with XS.1 to XS.8 connected to the static outputs
of Senduser(ZS.l1 to 2S.8); the static input, XS.9, connects to the
static output of the shift register (Sendsrl.ZS.l). The first pulsed
output (ZP.l) connects to the pulsed input of Sendclk(XP.1l). The next
eight pulsed outputs (ZP.2 to ZP.9) connect to the XP.l of Sendsrl,
Sendsr2, --~- and Sendsr8, respectively. The tenth pulsed output,
ZP.10, connects to Sendsrl.XP.2. The eleventh pulsed output, ZP.1ll,
connects to Sendbit.XP.l. The static output, ZS.l, connects to

Sendconverter.XS.9 of the test model to indicate whether Sendmgr is in

the Idle or Busy state. The list option of the FNS enumerates

possible state transitions based on the mapping of cs, xp's and xs's to
nts. Similarly, the list option of the FOUTP enumerates all possible
combinations of cs, xp's and xs's to map into the array of next pulsed
outputs, ntzp's. The first line of the FOUTP list demonstrates the use
of current local static input variables, cxs.l, cxs.2 and so on, as the

value of the ntzp's. The list option of FOUTS enumerates the mappings

249

of the current state into the current static output. The default
execution time is zero.

Further on in the specification of the shift registers in the
receiver of the Start-Stop link, the procedure option is used in FNS,
FOUTP and FOUTS. For example, Rcvsr8 (FSM), a one-bit shift register,
has a pulsed input, XP.l, comnected to Rcvmgr.ZP.3, a pulsed output,
ZP.1, counnected to Rcvsr7.XP.l, and a static output, zs.l, connected to
Rcvvuser.X5.8. The FOUTP procedure indicates that if the current pulsed
input is '0', then the next state value, nts, is '0', else if the current
pulsed input is 'l', then the next state value, nts, is 'l'. The FOUTP
and FOUTS are also specified via a local PASCAL procedure.

Sendclk a clock (CLK), will pulse out a timeout pulse to Sendmgr
1.0 time unit after the arrival of a start pulse to its pulsed input.
Sendclk has a pulsed imput, XP.1, connected to Sendmgr.ZP.l, a pulsed
output, ZP.l, connected to Sendmgr.XP.2, The static output of Sendclk
is not connected. The clock period is 1.0 time unit.

Medium, a static delay (DELS), acts as a delay between the sender
and the receiver of the Start-Stop link. The static input, XS.1,
connects to the Sendbit.Z2S.l; and the static output, 2ZS.l, connects to

both Rcvmgr.XS.l1 and Rcvdet.XS.l. The default initial static output

value of Medium is h and its delay time is arbitrarily 3.0 time units.
Revdet, a derivative (DER), senses the change of the static output
of Medium from low (1) to high (h) or high (h) to low (1) to pulse out a

rising (r) or falling (f) pulse to Sendmgr respectively. Rcvdet has a

250

static input, XS.1, counnected to Medium.ZS.l and a pulsed output, ZP.l,

connected to Rcvmgr.XP.l.

2. Test controller

The test countroller interfaces the user with the Start-Stop model
and automates much of the testing of the link. Figure 4.10 presents the
SAN specification of the Test Controller, which is bullt up from five

components: Senduser(ENV), Sendconverter(ENV), Sendque(QUE),

Revuser(ENV) and Tester(ENV). The Test controller makes it possible for
the user to send a stream of eight-bit bytes for transmission on the

link.

Since the sender accepts an eight-bit block (data) only if the

Sendmgr is in Idle state, the Sendconverter allows the data from the

Senduser to load into the FIFO queue, Sendque, only if the Sendmgr is in

Idle state. The Sendconverter also converts the eight static inputs of

the eight=bit byte into a pulsed output containing the eight=-bit
information as a single string. 1In this case, one FIFO queue is needed
to save the eight bits of data; otherwise eight FIFO queues will be

needed. The pulsed output of Sendconverter is loaded into the FIFO

queue, Sendque. Sendque saves all the data sent out by Senduser; the data

will be used by the Tester to check if the data received by the Rcvuser
is good or bad.

Revuser latches the eight=bit byte from the eight=bit shift
register in the recelver and converts the eight-bit byte into a

single string. When Rcvuser receives data from the receiver of the

251

Start-Stop link, it seunds out a char pulse to the Tester, which in
return pulses out a deq pulse to Sendque for the oldest data in the
queue. The data from Sendque is compared with the data received by the
Revuser. If they are equal, Tester pulses out a goodbyte pulse;

else, it pulses out a badbyte pulse.

3. Performance traces

The Start=Stop link simulation model has four variable history
instances to trace the execution of the Start—Stop link. The first
trace, named TraceMedium, 1s a regular variable history instance. It
records the value of the static input of Medium at every 1.0 time unit
interval and only one sample is recorded just before the current
simulation time is advanced. The second trace is named

TraceSendconverter; it is a conditional variable history instance. The

pulsed output of Sendconverter i1s checked just before simulation time is

advanced. If a pulse appears at Sendconverter.czp.l, then the value of

the pulse and the current simulation time is recorded. Similarly, the
third and the fourth conditional variable history instances named

TraceRcvuser and TraceTester trace the pulse being received at Rcvuser

and the pulse generated by Tester, respectively.

Figure 4.11 presents the traces of the TraceSendconverter,

TraceRcvuser, and TraceTester instances. From the instance

TraceSendconverter, we notice that an eight-bit byte, '01010101°', is

sent out from Senduser at tnow=1.0, '01010001' is sent out from Senduser

at tnow=13.0, and so on. From the instance TraceRcvuser we notice that

252

an eight-bit byte, '01010101l' is received by Rcvuser at tnow=13.5,
'01010001' is received by Rcvuser at tnow=25.5, and so on. From the
instance TraceTester, we notice that a good byte is received by the
Revuser at tnow=13.5, 25.5, 37.5 and so on. We also notice that there
is a 12.5 time unit delay before the Rcvuser received a byte sent from
the Senduser. The 12,5 time unit delay is the result of time needed to
send a start pulse, which takes 1.0 time unit; the eight-bit bytes takes
8.0 time units; the Medium has a delay of 3.0 time unit; and also the
0.5 time unit delay for the receiving clock to sample the middle of the
valid data.

Figure 4.12 presents the output of TraceMedium. It shows the value
of the static input of Medium at every unit time interval between the
simulation time period 1.0 to 150.0. From the trace, we can observe the
serial bit pattern generated by the Sendmgr. As indicated by the

instance TraceSendconverter an eight-bit byte '0101010l' is sent out

from Senduser at tnow=1.0. From the output of TraceMedium, we notice
that a start bit, 1, is first sent out to the Medium at: tnow=1.0.

It 1s then followed by eight bits of data, '01010101', as denoted by the
value of the static input of Medium from tnow=2.0 to 9.0, which is 1 h 1
hlh1lh. At the end of sending the eight-bit byte, two stop bits, h,
are sent out at tnow=10.0 and 11.0 as indicated in Figure 4.11, The
static input of Medium stays at h until tnow=13,0. At tnow=13.0, a new

eight-bit byte is sent out by Senduser as indicated by the output of

TraceSeundconverter. And so on.

253

VARHIST TraceSendconverter + conditional
Sendconverter,czp, 1 Time

01010101 1.000000000E+00
01010001 1.300000000E+01
11011001 2.500000000E4+01
10010001 3.700000000E+01
00000001 4,900000000E+01
10001011 6.100000000E+01
10011111 7.300000000E+01
11010011 8.500000000E+01
11010011 9.,700000000E+01
11010000 1.090000000€+02
11110000 1.210000000E+02
11110001 1.330000000E+02
11110111 1.450000000E+02
VARHIST TraceRcvuser : conditional
Rcvuser.czs, Time

01010101 1.350000000E+01
01010001 2.550000000E+01
11011001 3.750000000E+01
10010001 4,950000000E+01
00000001 6.150000000E+01
10001011 7.350000000E+01
10011111 8.550000000E+01
11010011 9. 750000000E+01
11010011 1.095000000E+02
11010000 1.215000000E+02
11110000 1.335000000E+02
11110001 1.455000000E+02
VARHIST TraceTester ¢+ conditional
Tester.czp.1 Time

Goodbyte 1.350000000E+01
Goodbyte 2.550000000E+01
Goodbyte 3.750000000E+01
Goodbyte 4.,950000000E+01
Goodbyte 6.,150000000E+01
Goodbyte 7.350000000E+01
Goodbyte 8.550000000E+01
Goodbyte 9.750000000E+01
Goodbyte 1.095000000E+02
Goodbyte 1.215000000E+02
Goodbyte 1.335000000E+02
Goodbyte 1.455000000E+02

Figure 4.11. Traces of the instances, TraceSendconverter, TraceRcvuser
and TraceTester

254

VARHIST TraceMedium :
Med ium,cxs.1
§}- - -~ -gtart bit

- - - —=glght~bit byte

- T T

----- «two stop bits

}-==- - idle line
J— — — - start bit

~ — -=-elght-bit byte

}- -~ -- two stop bits

:J"———-—————3’2’3’:’-———3’——3’—3’3’33’——-:"3’—3’3’—:‘3’3’3‘——-—3‘—3’——3‘3’33’
Al

regular

Time

1.,000000000E+00
2.000000000E+00
3.000000000E+00
4,000000000E+00
5.000000000E+00
6.000000000E+00
7.000000000E+00
8,000000000E+00
9.000000000E+00
1.000000000E+01
1.100000000E+01
1.200000000E+01
1.300000000E+01
1.400000000E+01
1.500000000E+01
1.600000000E+01
1.700000000E+01
1.800000000E+01
1.900000000E+01
2.000000000E+01
2.100000000E+01
2.200000000E+01
2,300000000E+01
2.400000000E+01
2.500000000E+01
2.600000000E+01
2.700000000E+01
2.800000000E+01
2.900000000E+01
3.000000000E+01
3.100000000E+01
3.200000000E+01
3.300000000E+01
3. 400000000E+01
3.500000000E+01
3,600000000E+01
3.700000000E+01
3.800000000E+01
3.900000000E+01
4.000000000E+01
4.100000000E+01
4., 200000000E+01
4, 300000000E+01
4.400000000E+01
4, 500000000E+01
. 600000000E+01
4, 700000000E+01
4,800000000E+01
4.900000000E+01
.000000000E+01
. 100000000E+01
.200000000E+Q1
. 300000000E+01
. 400000000E+01
.500000000E+01
. 600000000E+01

5
5
5
>
5
5
5
5.700000000£+01

Figure 4.12. Traces of the instance, TraceMedium

:7’3'——3’—'3’3"—3'3'3'3'3’3'3’3'——3—:3’3‘3’3‘~:’———3‘—3‘3’3‘

-—— 0 -3 ~——=T - -—=S=o=

Figure 4.12.

(continued)

255

5.,800000000E+01
5.900000000E+01
6.000000000E+01
6.100000000E+01
6.200000000E+01
6.300000000E+01
6.400000000E+01
6.500000000E+01
6.600000000E+01
6.700000000E+01
6.800000000E+01
6.900000000E+01

7.300000000E+01
7.400000000E+01
7.500000000E+01
7.600000000E+01
7.700000000E+01
7.800000000E+01
7.900000000E+01
8.000000000E+01
8. 100000000E+01
8.200000000E+01
8.300000000E+01
8.400000000E+01
8.500000000E+01
8.600000000E+01
8.700000000E+01
8.800000000E+0
8.900000000E+01
9.000000000E+01
9.100000000E+01
9.200000000E+01
9.300000000E+01
9.400000000E+01
9.500000000E+01
9.600000000E+01
9.700000000E+01
9.800000000E+01
9.900000000E+01
1.000000000E+02
1.010000000E+02
1.020000000E+02
1.030000000E+02
1.040000000E+02
1.050000000E+02
1.060000000E+02
1.070000000E+02
1.080000000E+02
1.090000000E+02
1.100000000E+02
1.110000000E+02
1.120000000E+02
1.130000000E+02
1.140000000E+02
1.150000000E+02
1,160000000E+02
1.170000000E+02

—_ T ITI T - ST———IFTTTIITT—FTFT——=—-—TSTITT—TTT

Figure 4.12.

(continued)

256

1.180000000E+02
1. 19000000Q0E+Q2
1.200000000E+02
1.210000000E+02
1.220000000E+02

1.230000000E+02

1.240000000E+02
1,250000000E+02
1.260000000E+02
1,270000000E+02
1.280000000E+02
1.290000000E+02
1. 300000000E+02
1.310000000E+02
1.320000000E+02
1, 330000000E+02
1. 340000000E+02
1.350000000E+02
1.360000000E+02
1.370000000E+02
1.380000000E+02
1. 390000000E+02
1, 400000000E+02
1.410000000E+02
1.420000000E+02
1,430000000E+02
1, 440000000E+02
1.,450000000E+02
1.460000000£+02
1. 470000000E+02
1. 480000000E+02
1.,490000000E+02
1.500000000E+02

257
D. Advanced Data Communication Control Procedures Simulation

-~ This section 1llustrates the use of the SAN and the SAS in
simulating a fairly complicated data communication protocol, namely the
Advanced Data Communication Control Procedures (ADCCP); ADCCP is the
American National Standard version of the High Level Data Link (HDLC).
The ADCCP is a set of algorithms for passing arbitrary bit sequences (or
messages) between devices connected by a bit serial communication
medium.

The work presented in this section is based on the work of Dayun He
in using the SAN and the SAS to simulatx and test an ADCCP system. The
SAN model of the ADCCP system is based on the formal ADCCP station model
developed by Piatkowskl [Pilatkowski 1979]. The details of the ADCCP SAN
model and the results of the simulation testing are presented in a paper
by Piatkowski, Ip and He [Piatkowski et al. 1982). Part of the following
paragraphs are taken from this paper.

In summary, a SAN model of a one~way point to point channel
consisting of the lowest three levels of two ADCCP stations were simulated
and testeds A block diagram of the channel is shown in Figure 4.13. The
ADCCP channel components are shown enclosed in the dashed boundary; the
additional external components are used to control and monitor the system
for exercising and testing. The kind of SAN component(s) comprising each
block in Figure 4.13 is indicated in the figure by the expressions within
the parentheses; e.g., ClockMgr a CFP, FCSSend a subsystem of one CFP and

elighteen FSMs. There are four ENVs, one CFP and a CLK for the

258

Figure 4.13.

channel with manual tester

Sénd User HilLevel
(ENV) (ENV)
XP.1 ZP.1 XP.1 ZP.1
 _ — 10,1,F(p) % Ab(p)
r——1—— "
l STk(p) , T,
| 2 FCSSend P. }
en >
| (CFP, 18 FsMs) P3¢ ;
| L2 7P, I
| T eik(p) 1 0,1,F(p) }
Excite | Zp.2 XP.1
ZerolInsertSend _ | \ FrameSend
(ENV) | (FSM) XP.3 e |
zp.1 I Xp.2 zp.1 |
y ext (p) | Fak (p) 1 0,1,F(p) '
c1 XH | P, ahborts Jp-2 |
ock Mgr L agAbortSen -
(cppy 2P ! R I XP.3 fe !
ZpP.2 xp.2 |°¢ P| zP.1 | J
start, h 0,1
yreset (p) timeout (p), XJ : (e) |
XP.1 ZP.1 l Medium |
Send Clock (DELP)
(CLK) | ZP.1 I
| T 0.1:(7) |
‘ XP.1 |)
FlagAbortRcv |
I (CFP, 10 FSMs)
1 2p.1 |
| y 0,1,F,Ab(p I
XP.1
| ZeroInsertRcy |
| { FSM) > FrameRev
2.1 l
| T 0,7:F,Ab(p l
| XP. 1 |
FCSRev
| (cFp 17 Fsts) |
L _____ wrpe
XP.1
RecvUser
(ENV)

Overview structure of a one-way point-to-point ADCCP

259

control and monitoring components (those components reside outside the
dashed boundary). There are twenty FSMs and one CFP in the send station,
a DELP in the Medium, and twenty—-eight FSMs and two CFPs in the receive
station of the channel.

The model specifies an automatic repeating clock for channel timing
and three terminal environments for manual data input and output
monitoring. A formatted listing of the variable history traces for a
sample run is shown in Figure 4.14. In it, we see that the sending side
(represented by SendUser.czp.l) transmitted the sequence

11 (PCS) FO1111110(C(FCS)F L1ADb

The receiving side (represented by FCSRcv.czp.l) correctly ignored
the bits preceeding the initial flag, checked the FCS (Frame Check
Sequence) for the first frame, passed the first frame up to the
receiving user, and detected the Abort. Note the proper timing for the
flag bits, zero insertion and deletion, and FCS handling.

In the second simulation run, a modified version of the same model
with automated (procedural) environment control and monitoring was
created by replacing the external components and variable history of the
previous version. This version provides for automatic high-speed long-
length random testing of the channel model. In this case, the sending
sequence was generated randomly and a single test monitoring ENV
determined that the receiver correctly delivered messages as sent by the
sender. The block diagram of the ADCCP channel with automatic tester is
shown in Figure 4.15. A formatted listing of the variable history

traces for a sample run 1is shown in Figure 4.16.

ClockMgr.czp. 1

FCSSend.c2p, 2

Senduser,czp.

FCSRev,c2p.1 HiLevel,c2zp.1 Time

- 0

crk etk Ty TemmEemeLT T : -
1k ek 1 - o 2
K clk T - - 3
cIk - : : - "
ik . - - : 5
eIk - TRl . : 5
ik - - - - 7
el . - - - 8
eIk - - - : 5
elk - . - - 10
clk - - - - 1
T - - e - 12 -
cik - - . . 13
etk T - - - H
Tk - - - - 15
cik : - - - 16
cik - - - . 17
clk - - - - 18 -
cik - - - - 19
ik - - . - 20)
clk - - . - 21
clk - - - - 22
cik - - - - 23
eIk - - - - 2y
cik - - - - 25
eIk - - - - 26
clk clk 0 - - 27
cik otk 1 : : 28
cik clk 1 - . 29
clk otk 1 - - 30
ctk otk 1 . - 3
clk ik 1 - . 32
eIk - - - - 33
1 - . L1

clk

Figure 4.14.

cik

Traces for a sample run

tester’

of the ADCCP channel with manual

261

- 35
36
- 37
s
39
40
n
- 42
- 43
' - LT
- 45
- L6
- 47

clk clk]
clk clk

N Y
[]

cik - -

-
1

cik - -
clk

1
[]
-
)

[<]
=
L]
)
-
[]

[+]
x
L]
L]
[]
[]

clk - - - ke
clk - - - 49

- 50
- 51
- 52
- 53
e - - 54
- 55
56
- 57
- " 58
- 59

=101 -2I10IDI0IOIOIDI=IO—

2]
=
[]
]
Ol 212 101at0
)

(2]
-

otk clk 1 - 60
clk eIk 1 - 61
clk clk - Ab 62
== 63
- - 64
ol - : : 65

o : " - - 66
meemns : - . 67

- Ab - &8

262

Sénd User
(ENV)
XP.1 P.1
1 0,1,F(p)
[t ——— o —
l C]k(p) v I
| 2 |
l FCSSend
(CFP, 18 FSMs) !
| .2 2p.1 |
I ‘ clk(p) ,0.1.F(p)| X.1
| ZP.2 XP.1 | Sendque
EEE&?e | Zerolaggfoend | (QUE)
zp.1 ! XP.2 2P .1 :
yext (p) Fok (p) 70,1,F(p)
C]ox::.; l ZP.§1 Aborts dxp.z {‘ UNCONNECTED
¢ r 1y agAbortSen
(chg ZP.1 o ,), Xp.1 FSM) |
ZP.2 xp.2__J ¢ zP.1 | Godbyte,
start, 1 0,1 Badbyte (p)
| reset (p) timeout (p), X:'l {p) | vt
XP.1 ZP.1 Med{um | 7P, 1
Send Clock ‘ (DELP) : Tester (ENy
(CLK) | ZP.1 | .1
| ‘ op]l(p) [- * |
| XP.1 I
FlagAbortRecv !
| (CFP, 10 FSMs)
| ZP.1 I
| L 0,1,F,Ab(p) |
XP.1 l
| ZerolnsertRcv |
l (FSM) | Revque
P (QUE)
| 7 0,1.F,Ab(p) : X. 1
| XP.1
FCSRcv |
| (CFP, 17 FsMs) i
| P.1 '
e oo 1 0,1,GF,AD(D) |
RecvUser
(ENV) zp.2
GF, Ab(p)

Figure 4.15. Overview structure of a one-Wway point-to-point ADCCP
channel with automatic tester

263

- - (") o 8 D " A e 0 o o O e o o e o e g G P e e At e g

Goodframe

Goodframe 9.400000000E401
Goodframe 1,620000000£+02
Goodframe 1.870000000£+02

Figure 4.16. Traces for a sample run of the ADCCP channel with
automatic tester

264

The simulation and testing of the ADCCP gystem demonstrates that the
SAN and the SAS are capable of simulating and testing complex protocol
systems and with the help of the procedural environment, random sequences
of bit pattern, can be generated to test the simulated system. In the
process of coding the SAN model of the ADCCP protocols, Dayun He found
several errors in the graphical ADCCP model [Piatkowski 1979]); these
errors were verified by SAS simulation runs. Equally important, an

unknown error in the ADCCP was discovered through a SAS run.

265
V. DISCUSSION AND CONCLUSIONS
A. SAN and SAS Model Size

The State Architecture Simulator (SAS) is running on a VAX 11/780
at Iowa State University using the VAX VMS V2.0 operating system. The
current version of SAS consists of approximately 10K lines of PASCAL
source code using 800 blocks of memory with 512 bytes per block. The
source code takes 5 cpu minutes to compile. This is a one-time
operation. The cpu time required to transform, compile, and link the
simple SAN model (Figure 4.2) with 47 lines of specification code into
the executable simulation file is about 30 secouds. Whereas for the
ADCCP model with 1625 lines of specification code, the total cpu time
required is about one minute.

S5AS is dimensioned to handle up to 50 FSMs, 20 each of CFPs, CFSs,
and ENVs, and 10 each of DELPs, DELSs, QUEs, CLKs, and DERs. Each
component can contain up to 20 input/output streams of each kind (XP,
XS, ZP, or 25). Each pulsed and static output can have up to 10 different
destinations (fanout). The maximum number of values that a state set
can have is 100 and the maximum number of different string values used in
the local FNS, FOUTP, and FOUTS procedures in the SAN model is 1000.

The above dimensions have been chosen so that a fairly complicated
protocol, such as the ADCCP channel, can be represented in SAN and
exercised in the SAS euviroument, while at the same time the amount of
memory space needed is under control. For example the ADCCP channel

needs 67 blocks for the SAN model and 350 blocks for the executable

266

simulation file. There 1s no reason that the SAS dimensions can not be
extended to allow simulation of more complicated protocols, provided the
VAX 11/780 system has enough memory and the PASCAL constraints are not
violated.

In the current SAS implementation, all the component names are
mapped into correspouding enumerated names. This is done so that each
compounent can be referenced via an array indexed by the enumerated name.
In PASCAL the enumerated name has a range of 256 differeant values. This
implies that the maximum number of components allowed in the SAN model
is 256. However, if the component names are mapped into an integer type
Instead of enumerated type, the above mentioned constraints can be

extended to allow 231 - 1 components.

B. Experience with SAN and SAS

SAS has been in operation since February 1982. It has been used as
a teaching tool in a graduate course in Formal Methods of Protocol
Design at Iowa State University. Students were using the SAN and the
SAS to simulate and exercise some simple discrete components.
Subsequently they formed three groups with two persons in a group to
simulate and exercise a simple unidirectional IEEE 488 system with a
gource and three acceptors linked together on a IEEE 488 Bus. After two
90 minute lectures on the SAN and the SAS, the students felt
comfortable enough in using the SAN and the SAS to simulate and test some

simple discrete systems. The students also made a few remarks about the

267

SAN gsemantics and the interactive SAS messages which were confusing to
them; for example, several unnecessary SAS messages which appeared on
the terminal have been taken out. Right now the only messages shown on
the terminal are those necessary to inform the users how to respond.

We have simulated and tested a SAN model of the start—-stop
communication protocol and an ADCCP channel as mentioned in the previous
chapter. In the above experiments, we used all of the kinds of
primitive SAN compounents and performance trace instances in the
simulations. During the simulation process, we can observe the status
of each component at different simulation times. The SAS also records
traces of different component statuses (identified by the component's
state, input, and output variables). The above experiments demoustrated
that the SAN and the SAS can be used to simulate and test a fairly
complicated protocol. On the other hand, some SAS programming
bugs and design philosophy deficiencies were discovered during the
experimentss for instance, the SAN syntax error messages were improved
to provide better understanding for users, the update event of a
component with execution time equal to zero has been changed to execute
immediately after its associated start event, the random number generator
was modified to provide better uniform distributions,’and the performance

trace was extended to record variables until the end of the simulation.
C. Reliability of SAS

There are two aspects concerning the reliability of SAS. 1Initially,

one 1s concerned with how closely the SAS simulation is related to the

268

SAN model. Secoundly, the robustness of the SAS program is considered.

SAS, a general purpose simulator, was designed to directly execute
the SAN specification. In other words, the SAN model is the simulation
model, unlike some modelling methods where the model has to be translated
into a programming language before the simulation can be exercised. In
using the SAN and the SAS to simulate and exercise the start=-stop
protocol and the ADCCP channél, we found that the SAS simulation does
totally reflect the behavior of the SAN model. The SAS gives a higher
priority to the ENV component (the ENV components are executed first for a
given simulation time). This was not a property of the SAN model until
SAS was built.

As for the robustness of the SAS program, each major procedure had
been tested before it was incorporated in the SAS main program.
Before the SAS was released, the SAS was tested by simulating a system
with all kinds of components and performance trace instances. Since
then, SAS has been used as a teaching tool in a graduate course in
Formal Methods of Protocol Design at Iowa State University as mentioned
in the previous section. I have also used the SAN and the SAS to
simulate and exercise a unidirectional start—stop link. Dayun He, a
Visiting Scholar from the People's Republic of China, has used the SAN
and the SAS to simulate and test the ADCCP channel. Through the use by
different groups of people, the SAN and the SAS were debugged and
upgraded. In general, the groups who used the SAN and the SAS did not
find any major problem in simulating and testing their protocol systems.

However, some modifications were made as mentioned in the previous

269

paragraphs. Presently, Dayun He 1s simulating a complete ADCCP system
with a primary and a secondary station. In thils case, the dimensions of
the SAS have been significantly extended to be able to simulate the whole

ADCCP system.

D. Limitations of SAN and SAS

The experience in using the SAN and the SAS revealed to us that the
currently supported version of SAN and SAS has a number of limitatious.
The following discussion reflects the author's opinion, in the order of
significance, of the limitations that he would like to see removed. The
changes which would result in major improvements for the SAN and the SAS
are presented first. They are as follows:

a) The current version allows only string type SAN variables,
which is very cumbersome in modelling operations with natural
numeric value; e.g., sequence numbers. We propose to have
integer or real type in addition to the string type SAN
variable to allow PASCAL arithmetic operations on SAN
variables. Internal to the SAS, the string type SAN variables
would be interpreted to be either integers or reals. This is
done to have a uniform data type for all SAN variables as far
as SAS is concerned.

b) The current ENV type components do not have any state
variable. We propose to introduce an explicit state variable

into the ENV type compounent. The state variable is used as a

c)

d)

e)

270

local memory to retain partial input history information of an
ENV component after the component is executed.

The current local FNS, FOUTP, and FOUTS procedures do not allow
any user declared local variables. The addition of such local
variables to the FNS, FOUTP, and FOUTS procedures will greatly
enhance the convenience in using local procedures. For
instance, a local integer variable, i, can be used in a for
loop to reference a set of outputs (for i:=1 to n do
ntzp[1]:='0"), instead of writing out all the output
assignments one by one.

The current SAN state and input/output variables are declared
as simple strings. We propose to add arrays of strings to

the SAN state and input/output variables so that it will be
more convenient to model compounents with parallel data paths;
e.g., defining an eight-bit byte as an array [l..8] of O or 1
[Piatkowski 1981].

The current system components are defined individually with
explicit input and output connections. If a subsystem with
identical components is used, like a shift register made up of
a set of interconnected flip-flops, the current SAN and SAS
force the user to.define each individual component and their
interconnections one by one. We propose to allow such built-up
systems to be defined as "arrays of components,” e.g.,
defining a shift reglster as an array of rippling flip-flops

[Platkowski 1981].

£)

g)

h)

1)

)

271

The current version has only nine primitive components. We
propose to allow the user to define new types of system
components built-up from the primitive component types. This
idea was kept in mind in the design of the SAS so that SAS
can be upgraded to allow the above new feature.

The current Data Input process will stop the SAS run whenever
a SAN syntax error is encountered. We propose to allow the
Data Input process to detect multiple SAN syntax errors before
the SAS run is terminated.

The current version has a multiple pulsed input check option
(mulpulsecheck) for each ENV component and a global mulpulse-
check for the rest of the components with pulsed inputs. It
would be counvenient to have individual multiple pulsed input
check options for each component instance; e.g., some FSM
components may allow multiple pulses arriving simultaneously
and others not.

The current initialization instance can not initialize the
components' status e.g., Texec or defsinit. We propose to
allow the initialization instance to have an option to re-
initialize the components' status without changing the

default value of the components.

We propose to add an additional command to the Terminal Mode
Command Language to Interactively suppress and invoke the

trace of the SAS messages.

272

The above limitations are presented in order of significance: (a)
the most significant and (j) the least significant. The modification
steps for some of the limitatiouns stated will affect the status of
the other limitations.' Hence it appears advantageous to the author to

solve the afore-mentioned limitations in the following order: (b), (c),

(g), (h), (B, (1), (a), (d), (e), and (£f).

E. Conclusions

The author would like to point out some of his research
contributions. The major contribution is the design and implementation
of the general purpose State Architecture Simulator (SAS) that accepts
system specifications written in the State Architecture Notation (SAN),
compiles them into an executable PASCAL simulation program, and executes
thém. In the process of developing the SAS, he refined the SAN language
_proposed by Piatkowski [Piatkowski 198l] and developed or helped develop
some data communication SAN models (the start—stop link and the ADCCP
channel) to illustrate SAN and SAS.

The above coutributions made it possible to have a teaching tool in
a graduate course in Formal Methods of Protocol Design at Iowa State
University. The fact that SAS allows users to observe and interact with
simulations of SAN models of protocol system is a valuable tool in

informal design validation.

273
VI. BIBLIOGRAPHY

Alfonzetti, S.; Casale, S.; and Faro, A. "A Formal Description of the
DTE Packet Level in the X.25 Recommendation.” Alta Frequenze
48, No. 8 (August 1979): 339-348.

Bjorner, D. "Finite State Automaton = Definition of Data Communication
Line Control Procedures." Proceedings of the Fall Joint Computer
Conference. Montvale: AFIPS Press, 1970.

Bochmann, Gregor V. "Logical Verification and Implementation of
Protocols.” Pp. 8.5-8.20 in Proceedings of the Fourth Data
Communication Symposium. New York, N.¥Y.: IEEE, 1975.

Bochmann, Gregor V.; and Chung, R. J. "A Formalized Specification of

HDLC classes of Procedures.” Pp. 03A:2.1-~03A:2.11 in Proceedings
of the National Telecommunications Conference. New York, N.Y.:

IEEE, December 1977.

Bochmann, Gregor V. "Finite State Description of Communication
Protocols." Computer Networks 2 (October 1978): 362-372.

CCITT. Provisional Recommendation X.25, Interface Between Data
Terminal Equipment (DTE) and Data Circuit Terminating Equipment (DCE)
for Terminals Operating in the Packet Mode on Public Data Networks.
Geneva: Consultive Committee for International Telephone and

Telegraph, 1977.

Danthine, A. S.; and Bremer, J. "Modelling and Verification of End-to-
End Transport Protocols.” Computer Networks 2 (October 1978):

381-395.,

Diaz, Michel. '"Modelling and Analysis of Communication and Cooperation
Protocols Using Petri Net Based Models." Proceedings of the
Second International Workshop on Protocol Specification, Testing,
and Verification. Idyllwild, CA: n.p., May 1982,

Digital Equipment. Digital Data Communications Message Protocol
(DDCMP). DIGITAL NETWORK ARCHITECTURE (DECNET). Maynard, MA:

Digital Equipment Corp., March 1978.

Gardner, Robert I. "State of the Implementation of SARA." Pp. 82=-83 in
Proceedings of the Symposium on Design Automation and

Microprocessors. New York, N. Y.: IEEE, February 1977.

274

Gouda, M. G.; and Mauning, E. G. "Protocol Machines: A Concise Format
Model and its Automatic Implementation.” Pp. 346-350 in
Proceedings of the Third International Conference on Computer
Communications. Washington, D.C.: International Council for

Computer Communication, August 1976.

Green, P. E., Jr. Computer Network Architecture and Protocols. New
York, N.Y.: Plenum Press, 1982.

Hailpern, B.; and Owicki, S. "Verifying Network Protocols Using
Temporal Logic.” Pp. 18-28 in Proceedings of NBS Trends and
Applications Symposium. New York, N.Y.: IEEE, 1980.

Harangozo, J. "An Approach to Describe a Link Level Protocol with a
Formal Lanauage." Pp. 4.37-4.49 in Proceedings of the Fifth Data
Communication Symposium. New York, N.Y.: IEEE, September 1977.

Hewlett—Packard. Condensed Description of the Hewlett—Packard Interface
Bus. ==hp--part No. 59401-90030. Loveland, Colorado: Hewlett-

Packard Co., 1975.

IEEE. IEEE Digital Interface for Programmable Instrumentation, IEEE
Standard 488-1978. Long Beach, CA: IEEE, 1978.

Jensen, Kathleen; and Wirth, Nicklaus. PASCAL User Manual and Report.
New York, N.Y.: Springer-Verlag, 1978.

Kawashima, H.; Futami, K.; and Kand, S. "Functional Specification of
Call Processing by State Transition Diagrams." IEEE Transactions
on Communications COM-19 (October 1971): 581-587.

Merlin, P, M.; and Farber, D. J. "Recoverability of Communication
Protocols Implications of a Thenretical Study." IEEE Transactions
on Communications COM-24 (September 1976): 1036-1043.

Piatkowski, T. F. "Finite-State Architecture.” IBM Technical Report
TR29.0133. IBM Corp., Research Triangle Park, North Carolina,

July 1975,

Piatkowski, T. F. "A Formal Model of the Advanced Data Communication
Control Procedures (ADCCP)." A report. Institute for Computer
Science and Technology, National Bureau of Standards, Washington,
D.C., September 1979.

Piatkowski, T. F. "An Engineering Discipline for Distributed Protocol
Systems.” Pp. 177-215 in Proceedings of the First International
Workshop on Protocol Specification, Testing, and Verificatiomn.
Middlesex, UK: National Physical Laboratory, May 198l.

275

Piatkowski, T. F.; Ip, Lap-Kin; and He, Dayun. "STATE ARCHITECTURE
NOTATION AND SIMULATION: A Formal Technique for the Specification
and Testing of Protocol Systems." Proceedings of the Second
International Workshop on Protocol Specification, Testing and
Verification. Idyllwild CA: n.p., May 1982,

Postel, J.; and Farber, D. "Graph Modelling of Computer Communications
Protocols." Pp. 66-67 in Proceedings of the Fifth Texas
Conference on Computing Systems. Long Beach, CA: IEEE, 1976.

Proceedings of the First International Workshop on Protocol
Specification, Testing and Verification. Middlesex, UK: National

Physical Laboratory, May 198l.

Proceedings of the Second International Workshop on Protocol
Specification, Testing and Verificationm. 1dyllwild, CA: n.p.,

May 1982.

Razouk, Rami R.; and Estrin, Gerald. "The Graph Model of Behavior
Simulator."” Pp. 89-98 in Proceedings of the Symposium on Design
Automation and Microprocessors. New York N.Y.: IEEE, February
1977.

Remes, Antero. "Simulation Techniques in Network Design."” in Computer
Networks and Simulation, pp. 85-100. Edited by S. Schoemaker.

Amsterdam: North-Holland Publishing Company, 1978.

Rockstrom, Anders; and Saracco, Roberto. "SDL — CCITT Specification and
Description Language."” IEEE Transactions on Communications COM-24
(June 1982): 1310-1318.

Schultz, G. D.; Rose, D. B.; West, C. H.; and Gray, J. P. "Executable
Description and Validation of SNA." IEEE Transactions on
Communications COM-28 (April 1980): 661-677.

SNA. SNA Format and Protocol Reference Manual: Architecture Logic.
S8C 30-3112. White Plains, N.Y.: IBM Corp., 1976.

SNA. SNA Format and Protocol Reference Manual: Architecture Logic.
SC 30-3112-0l. White Plains, N.Y.: IBM Corp., 1978.

Stenning, V. N. "A Data Transfer Protocol."” Computer Networks 1
(September 1976): 99-110.

Sundstrom, R. J. "Formal Definition of IBM's System Network
Architecture." Pp. 03A:1.1-03A:1.7 in Proceedings of the Natiomal

Telecommunications Conference. New York, N.Y.: IEEE December
1977.

276

Sunshine, Carl A. "Survey of Protocol Definition and Verification
Techniques.” Pp. Fl.1-Fl.4 in Proceedings of the Computer Network
Protocols Symposium. Liege, Belgium: University of Liege,

February 1978.

Sunshine, Carl A. Communication Protocol Modelling. Dedham, MA:
Artech House Inc., 198l.

Sussenguth, E. "System Network Architecture." Iunterface '76. Miami,
Florida: un.p., 1976.

Symous, F. J. W. "Introduction to Numerical Petri Nets, a General Model
of Concurrent Processing Systems." Australian Telecommunication

Research 14, No. 1 (1980a): 28-32.

Symons, F. J. W. "The Verification of Communication Protocols using
Petri Nets." Australian Telecommunication Research 14, No. 1

(1980b): 34-38.

Teng, Albert Y.; and Liu, Ming T. "A Formal Approach to the Design aund
Implementation of Network Communication Protocol." Proceedings of
the COMPSAC. Long Beach, CA: IEEE, 1978.

Yeh, Jeffy W. "“Simulation of Local Computer Networks." Pp. 56-66 in
Proceedings of the 4th Conference on Local Computer Networks. New
York, N.Y.: IEEE, October 1979,

277
VII. ACKNOWLEDGMENTS

The author would like to thank his major professors Dr. Thomas F.
Piatkowski and Dr. Arthur V. Pohﬁ. In particular, Dr. Piatkowski
provided valuable suggestions, guidance, and encouragement throughout the
work. The Affiliates Program in Electronics Science and Technology, ILowa
State University, provided financial support in the form of a graduate
research assistantship.

Thanks are also due to Mr. Dayun He for the discussion of his
experience in using SAN and SAS, to Mr. Marcus Jobe for proofreading
the dissertation, and to Mrs. Sherry Smay for typing the dissertation.

This work is dedicated to the author's wife, Esther, for her love,
patience, and support and to the author's parents and brother for always
encouraging the author in his study.

Finally, the author thanks God for His abundant blessing.

278

VIII. APPENDIX: STATE ARCHITECTURE NOTATION
SYNTAX DIAGRAMS

This appendix summarizes the syntax of State Architecture Notation
(SAN) with syntax diagrams in the format commonly used for PASCAL
[Jensen 1978]. The elements such as integer and real, which are the
same as PASCAL syntax, are not shown in the following syntax diagrams.
In case a PASCAL procedure is needed, the user should refer to the
syntax in the PASCAL User Manual [Jensen 1978]. The syntax diagrams do
not reflect a direct implementation of the SAS syntax checking process;
however, the syntax diagrams do provide a correct format for the users to
specify their SAN models. Users are also urged to follow the syntax

dlagrams to specify their SAN model.

279

name .
~
N 5
N . 4
streamvalues

Nos
o neme |-

S : streamvalues —){ : }——)
ZPline

Sline

integer]—wﬂmj

streamvalues ’

ZSline

e ‘ integer UNCONNECTEDJ

280

defainitline
R O e O
XPline

teger l_{uucounzcra——

ﬁ(FROM Mame

integer

({1 (3)

XSline

~N
integer J———;@NCONNECTEDJ

__9(FROM)_;l_ name

integer

Xp localvar

o=

X8

|
éH @éa
|
foons!

ntzs
— |
nts
updatevar
— integer
nts
gobalvar

281

cs

name

:

:

ntzp

localvar

it

expression

—

expressfon

2

3

B
v

O

w
=
o

¢

282

FSMFNSline

FSMFNSspec

(20

@

Erocedl@—)FROCEDURESpeb

list

FSMFNSUne

statement
—_— _1_f_ expression then statement else gtatement
—-(whue)—; expression o statement |
_repeat statement - until expression
H
gtatement .ﬂ’.
r—; updatevar H localvar
t name t
PROCEDUREspec
statement >

FSMFOUTPUne

283

*

Q=] Qﬁ.é'i@“-;i°

-/

FSMFOUTPspec

FSMFOUTSline

FSMFOUTSspec

r—{ FSMFOUTPlne

procedura HPROCEDUREBWC

FOUTS H

FSMFOUTSline

CFPFOUTPline

CFPFOUTPspec

Sl

tn
Z
*]
-

CFPFOUTPline

284

CFSFOUTSline
S @ Fa[ntas Gr—
® Cx
CFSFOUTSspec
procedure } PROCEDUREspec
(2w)~ @-G—
list CFSFOUTSlne
—=)
deftexecline
(o (D ®
deftdelline
deftdel ° +real —-)@———)
defzsinitline

defzsinit H name

285

FSMspec

——y@—EF—)@—(interlaced Sline I__l
I———{ XSlne II: { XPune:IQ-L- defsinitline (J

=)

FSMFNSapec K-

"

FSMFOUTPspec —-l
FSMFOUTSspec I——,
deftexecline

O 0=
ll XPline F

CFPspec

——)l ZPline l——4| CFPFOUTPspec
D)

286

CFSapec

@ name Mlnterlaced}m-

defzsinitline CFSFOUTSapec ‘(—E Z8line k
deftexecline

’ DELPspeac
———-—)@BLP_?—& name H interlaced

XP.]J—A EROM

H streamvalues :
f
2p.1 TQ name . Xp . integer 3
@ deftdelline 5 streamvalues :
DELSspec
DELS name H intariaced X8.1 FROM
streamvalues H integer ° @ ° name
O~ =
deftdelline defzsinitline streamvalues

287

QUEspec

QUE name H interlaced

{nteger . 2P . name 1—-(FROM @

kt < UNCONNECTED }G——I

ZP,1 T0, name . XP) integer)
UNCONNECTED

4 streanvalues

name:

O~)~
Camm -0 O~ Cazm -0

A1y

CLKspec

288

T0 name . Xp - integer H tmeout H
’
,‘ UNCONNEGCTED }
H integar . XS . name T0 28.1
?
reset 5 running ’ expired H deftelk

()

I~

I=

-

N
o
—

name

SO

4 interlaced Xs.) FROM
UNCONNECTED
H integer . 28 | name
O—
name . XP

integer

289

+roal

e name

globalvar

boolean exprassion _@

290

ENVspec

NV name . interlaced

P P ey

FUNCTION

terminal

PASCAL! *
ENV
procadure

B mulpulsecheck deftexecline defzsinitline

procedure

true

, boolean
expression

false

VARIABLESline

.VARIABLES

globalname

CHECKOPTUne

CHECKOPT

A 4

©

averxavent

everytimechange

— e Ty et waan vt ppasey

1 A PASCAL ENV procedure as described in Chapter II.J

VARHISTapec

-0

291

—-;(rogular | VARIABLElne

. DTHISTORY o -

‘——-)Gondmonal | VARIABLELne

‘ GHECKOPTlne l((,)(

EXPHISTspec

_)(EXPHISTORY name

. boolean
(’) expression

DTHISTORY H

+real

INITspec

bool
‘conm'rxoD__)@_) boclean
expression

EXPRESSION

CHECKOPTIine

e

SANmodel

.

CFSapec

|

292

DELPspec

VARHISTapec

INITspec

L T

‘[Dsrﬂ P l
"

EXPHISTspec l(—]

e

L}

DERspec 1

v

	1982
	A general purpose State Architecture Simulator for discrete systems with application in data communication protocols
	Lap-Kin Ip
	Recommended Citation

	tmp.1415296852.pdf.s8pCV

